【題目】設(shè)P為橢圓1ab0)上任一點,F1F2為橢圓的焦點,|PF1|+|PF2|4,離心率為

1)求橢圓的方程;

2)若直線lykx+m≠0)與橢圓交于A、B兩點,若線段AB的中點C的直線yx上,O為坐標(biāo)原點.求△OAB的面積S的最大值.

【答案】(1)(2)

【解析】

1)根據(jù)題意,計算出的值即可;

2)聯(lián)立直線與橢圓方程消去得到一個關(guān)于的一元二次方程,由韋達定理可得,再將其代入所在直線上,可解得,故可化簡關(guān)于的一元二次方程,從而得到關(guān)于的表達式,再結(jié)合不等式即可得到最大值.

1)根據(jù)題意,可得2aPF1|+|PF2|4,所以a2

cae,所以b,

所以橢圓的方程為:;

2)設(shè)Ax1,y1),Bx2,y2),Cxcyc),

將直線lykx+m代入方程

得(1+2k2x2+4kmx+2m240*

由韋達定理可知xc,

從而yckxc+m,

又線段AB的中點C的直線yx上,

所以,解得k=﹣1,

則(*)變?yōu)?/span>3x24mx+2m240,

所以|AB|,

則△OAB底邊AB的高h,所以S,

∵(6m2m2,

S,即S得最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調(diào)查專項附加扣除的享受情況.

(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機抽取2人接受采訪.

員工

項目

A

B

C

D

E

F

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養(yǎng)老人

×

×

×

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點PAD的中點,點Q上的動點,給出下列說法:

可能與平面平行;

BC所成的最大角為

PQ一定垂直;

所成的最大角的正切值為;

其中正確的有______寫出所有正確命題的序號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,,若,則稱收縮數(shù)列”.其中,,分別表示中的最大數(shù)和最小數(shù).已知為無窮數(shù)列,其前項和為,數(shù)列收縮數(shù)列”.

1)若,求的前項和;

2)證明:收縮數(shù)列仍是;

3)若,求所有滿足該條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】業(yè)界稱中國芯迎來發(fā)展和投資元年,某芯片企業(yè)準(zhǔn)備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為(為常數(shù))元,之后每年會投入一筆研發(fā)資金,年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當(dāng)時,近似地滿足,其中為常數(shù),.已知年后總投入資金為研發(fā)啟動時投入資金的倍.問

1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的倍;

2)研發(fā)啟動后第幾年的投入資金的最多.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是平行四邊形的四棱錐中,,,且,若平面,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

2)設(shè)點P為曲線C上的動點,點MN為直線上的兩個動點,若是以為直角的等腰三角形,求直角邊長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)的取值范圍;

(Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足

?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案