分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x+y=0}\\{x-y=-1}\end{array}\right.$,解得A($-\frac{1}{2},\frac{1}{2}$),
化目標函數(shù)z=2x+y為y=-2x+z.
由圖可知,當直線y=-2x+z過點A時,直線在y軸上的截距最小,z有最小值為2×$(-\frac{1}{2})+\frac{1}{2}$=$-\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $φ=\frac{π}{6},{x_0}=\frac{5}{3}$ | B. | $φ=\frac{π}{6},{x_0}=1$ | C. | $φ=\frac{π}{3},{x_0}=\frac{5}{3}$ | D. | $φ=\frac{π}{3},{x_0}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com