在中,角A,B,C的對(duì)邊分別為,且滿(mǎn)足
(1)求角A的大。
(2)若,求.
(1);(2).
解析試題分析:(1)條件中的等式給出了邊與角滿(mǎn)足的關(guān)系,因此可以考慮采用正弦定理實(shí)現(xiàn)邊角互化,統(tǒng)一轉(zhuǎn)化為角的關(guān)系:,
即,再由,可知,從而;(2)由平面向量數(shù)量積的性質(zhì)可知,可以通過(guò)求即,而利用(1)中求得的即可得,從而.
試題解析:(1)∵,
∴根據(jù)正弦定理得, 2分
即 4分
又∵,∴,∴,而,∴; 6分
(2)由(1)知, 8分
又∵, 10分
∴. 12分
考點(diǎn):1.正弦定理解三角形;2.三角恒等變形;3.平面向量數(shù)量積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且.
(1)求角A的大小; (2)若,求△ABC的周長(zhǎng)L的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且
(2b+c)cosA+acosC =0
(1)求角A的大小:
(2)求的最大值,并求取得最大值時(shí)角 B.C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
的三個(gè)內(nèi)角所對(duì)的邊分別為,向量,,且.
(1)求的大;
(2)現(xiàn)在給出下列三個(gè)條件:①;②;③,試從中再選擇兩個(gè)條件以確定,求出所確定的的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,兩座建筑物AB,CD的高度分別是9m和15m,從建筑物AB的頂部看建筑物CD的張角,求建筑物AB和CD底部之間的距離BD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知的一個(gè)內(nèi)角為,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則的面積為_(kāi)______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com