思路解析:由曲線的定義確定曲線C的形狀,待定系數(shù)法求軌跡方程.
解法一:(待定系數(shù)法)建立如圖8-6-7坐標(biāo)系,以l1為x軸,線段MN的垂直平分線為y軸,點(diǎn)O為坐標(biāo)原點(diǎn).
依題意知曲線段C是以點(diǎn)N為焦點(diǎn),以l2為準(zhǔn)線的拋物線的一段,其中A、B分別為C的端點(diǎn).
設(shè)曲線段C的方程y2=2px(p>0)(xA≤x≤xB,y>0),其中xA、xB分別為A、B的橫坐標(biāo),p=|MN|.
所以M(-,0),N(,0).
由|AM|=,|AN|=3得
(xa+)2+2pxA=17, ①
(xa-)2+2pxA=9. ②
由①②兩式聯(lián)立解得xa=.再次其代入①式并由p>0解得
或
因?yàn)椤鰽MN是銳角三角形,所以>xa.
故舍去因此
由點(diǎn)B在曲線段C上,得xB=|BN|=-=4.
綜上,得曲線段C的方程為y2=8x(1≤x≤4,y>0).
解法二:(直接法)如圖,建立坐標(biāo)系,分別以l1、l2為x軸、y軸,M為坐標(biāo)原點(diǎn).
作AE⊥l1,AD⊥l2,BF⊥l2,垂足分別為E、D、F.
設(shè)A(xA,yA),B(xB,yB),N(xN,0).
依題意,有xA=|ME|=|DA|=|AN|=3,
yA=|DM|==2.
由于△AMN為銳角三角形,故有xN=|ME|+|EN|
=|ME|+=4.
xB=|BF|=|BN|=6.
設(shè)點(diǎn)P(x,y)是曲線段C上任一點(diǎn),則由題意知|PN|2=x2.
∴(x-xN)2+y2=x2,xA≤x≤xB,y>0.
故曲線段C的方程為y2=8(x-2)(3≤x≤6,y>0).
解法三:以l1為x軸,線段MN的中點(diǎn)為原點(diǎn),建立坐標(biāo)系如下圖所示,由拋物線定義知C所在曲線方程為y2=2px.
過(guò)A、B分別作垂直于l1、l2的線段,則點(diǎn)F在MN上,
p=|MN|
=|MF|+|FN|
=|AE|+
=|AN|+)
=3+
=3+=4.
又|OF|=|MF|-|MO|=3-2=1,|OK|=|MK|-|MO|=6-2=4,
∴曲線段C的方程是y2=8x(1≤x≤4,y>0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市小海中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com