【題目】《最強大腦》是江蘇衛(wèi)視推出國內(nèi)首檔大型科學類真人秀電視節(jié)目,該節(jié)目集結了國內(nèi)外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強學生的記憶力和辨識力也組織了一場類似《最強大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分,假設每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結果相互獨立.
(1)求比賽結束時A隊的得分高于B隊的得分的概率;
(2)求比賽結束時B隊得分X的分布列和期望.

【答案】
(1)解:設事件“比賽結束時A隊的得分高于B隊的得分”為A,事件“比賽結束時B隊的得分高于a隊的得分”,事件“比賽結束時A隊的得分等于B隊的得分”為事件C,根據(jù):每局比賽兩隊選手獲勝的概率均為0.5,

則P(A)=P(B),P(A)+P(B)+P(C)=1,P(C)=0.

∴P(A)=


(2)解:X的可能取值為0,1,2,3,4,5.

P(X=0)= = ,P(X=1)= = ,

P(X=2)= + = ,

P(X=3)= + × = ,

P(X=4)= = ,P(X=5)= =

X

0

1

2

3

4

5

P

E(X)=0× +1× +2× +3× +4× +5× =


【解析】(1)設事件“比賽結束時A隊的得分高于B隊的得分”為A,事件“比賽結束時B隊的得分高于a隊的得分”,事件“比賽結束時A隊的得分等于B隊的得分”為事件C,根據(jù):每局比賽兩隊選手獲勝的概率均為0.5,可得P(A)=P(B),P(A)+P(B)+P(C)=1,P(C)=0.即可得出P(A).(2)X的可能取值為0,1,2,3,4,5.根據(jù)相互獨立與互斥事件的概率計算公式即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是橢圓的短軸位于軸下方的端點,過作斜率為1的直線交橢圓于點,點軸上,且軸,

1)若點的坐標為,求橢圓的方程;

2)若點的坐標為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的公差d>0,前n項和為Sn , 已知3 是﹣a2與a9的等比中項,S10=﹣20.
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,求數(shù)列{bn}的前n項和Tn(n≥6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某學校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160);第二組[160,165)、…、第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構成等差數(shù)列.

(1)估計這所學校高三年級全體男生身高180cm以上(含180cm)的人數(shù);


2)求第六組、第七組的頻率并補充完整頻率分布直方圖(如需增加刻度請在縱軸上標記出數(shù)據(jù),并用直尺作圖);

(3)由直方圖估計男生身高的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一動圓與圓外切,與圓內(nèi)切.

(1)求動圓圓心的軌跡的方程.

(2)設過圓心的直線與軌跡相交于兩點,為圓的圓心)的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式;

(2)記,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面四邊形ABCD中,AB= ,BC=2,AC⊥CD,AC=CD,則四邊形ABCD面積的最大值為

查看答案和解析>>

同步練習冊答案