【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165)、…、第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高180cm以上(含180cm)的人數(shù);


2)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(如需增加刻度請(qǐng)?jiān)诳v軸上標(biāo)記出數(shù)據(jù),并用直尺作圖);

(3)由直方圖估計(jì)男生身高的中位數(shù).

【答案】(1);(2)詳見(jiàn)解析;(3).

【解析】試題分析:(1) 由頻率分布直方圖,可得前五組頻率,利用各矩形面積和為 ,可得后三組頻率和人數(shù),又可得后三組的人數(shù),可得平均身高;(2)由頻率分布直方圖得第八組頻率為可得人數(shù)為人,設(shè)第六組人數(shù)為 根據(jù)第七組人數(shù)列方程求得進(jìn)而可得結(jié)果;(3)設(shè)中位數(shù)為,由 頻率為,可得 ,從而可得結(jié)果.

試題解析:(1)由直方圖,前五組頻率為(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三組頻率為1-0.82=0.18.

這所學(xué)校高三男生身高在180cm以上(含180cm)的人數(shù)為800×0.18=144人.

(2)由頻率分布直方圖得第八組頻率為0.008×5=0.04,人數(shù)為0.04×50=2人,

設(shè)第六組人數(shù)為m,則第七組人數(shù)為0.18×50-2-m=7-m,

m+2=2(7-m),所以m=4,即第六組人數(shù)為4人,第七組人數(shù)為3人,頻率分別為0.08,0.06.

頻率除以組距分別等于0.016,0.012,見(jiàn)圖.

3)設(shè)中位數(shù)為,由頻率為,所以,解得=174.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中, ,ACB=90°,M是 的中點(diǎn),N是的中點(diǎn).

Ⅰ)求證:MN∥平面

求點(diǎn)到平面BMC的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), 兩點(diǎn)都在拋物線上,且.

(1)求證:直線必過(guò)一定點(diǎn);

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視推出國(guó)內(nèi)首檔大型科學(xué)類(lèi)真人秀電視節(jié)目,該節(jié)目集結(jié)了國(guó)內(nèi)外最頂尖的腦力高手,堪稱(chēng)腦力界的奧林匹克,某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力也組織了一場(chǎng)類(lèi)似《最強(qiáng)大腦》的PK賽,A、B兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分,假設(shè)每局比賽兩隊(duì)選手獲勝的概率均為0.5,且各局比賽結(jié)果相互獨(dú)立.
(1)求比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率;
(2)求比賽結(jié)束時(shí)B隊(duì)得分X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱中,,分別是 的中點(diǎn),,為棱上的點(diǎn).

(1)證明:

(2)是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為?若存在,說(shuō)明點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若,則稱(chēng)的“不動(dòng)點(diǎn)”;若,則稱(chēng)的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長(zhǎng)為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大;
(Ⅲ)在棱AE上是否存在點(diǎn)F,使得DF∥平面BCE?若存在,求 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線性回歸方程得到的估計(jì)數(shù)據(jù)與4月份所選5天的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請(qǐng)根據(jù)4月74月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?

參考公式: ,

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案