精英家教網(wǎng)如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,D是A1C1的中點(diǎn),則直線AD與平面B1DC所成角的正弦值為
 
分析:如圖,先證出B1D⊥平面AC1,過(guò)A點(diǎn)作AG⊥CD,證AG⊥平面B1DC,可知∠ADG即為直線AD與平面B1DC所成角,求其正弦即可.
解答:精英家教網(wǎng)解:如圖,連接B1D易證B1D⊥平面AC1,過(guò)A點(diǎn)作AG⊥CD,
則由B1D⊥平面AC1,得AG⊥B1D由線面垂直的判定定理得AG⊥平面B1DC,
于是∠ADG即為直線AD與平面B1DC所成角,
由已知,不妨令棱長(zhǎng)為2,則可得AD=
5
=CD,
由等面積法算得AG=
AC×AA 1
CD
=
4
5
5

所以直線AD與面DCB1的正弦值為
4
5
;
故答案為
4
5
點(diǎn)評(píng):考查正棱柱的性質(zhì)以及線面角的求法.考查空間想象能力以及點(diǎn)線面的位置關(guān)系
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正三棱柱ABC-A1B1C1各棱長(zhǎng)都為a,P為線段A1B上的動(dòng)點(diǎn).
(Ⅰ)試確定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2cm,高位5cm,一質(zhì)點(diǎn)自A點(diǎn)出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長(zhǎng)為
13
13
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都為a,P為A1B上的點(diǎn).
(1)試確定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的條件下,求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正三棱柱ABC-A1B1C1,D是AC的中點(diǎn),C1DC=600,則異面直線AB1與C1D所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶三模)如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為a,截面AB1C和A1BC1相交于DE,則三棱錐B-B1DE的體積為
3
48
a3
3
48
a3

查看答案和解析>>

同步練習(xí)冊(cè)答案