設(shè),函數(shù).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,寫出函數(shù)的單調(diào)區(qū)間(不必證明);
(3)若存在,使得關(guān)于的方程有三個不相等的實數(shù)解,求實數(shù)的取值范圍.
(1)9(2)單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是(3)
【解析】(1)當,時,
作函數(shù)圖像(圖像略),可知函數(shù)在區(qū)間上是增函數(shù),所以的最大值為.…………(4分)
(2)……(1分)
①當時,,
因為,所以,
所以在上單調(diào)遞增.…………(3分)
②當時,,
因為,所以,所以在上單調(diào)遞增,在上單調(diào)遞減.…………(5分)
綜上,函數(shù)的單調(diào)遞增區(qū)間是和,
單調(diào)遞減區(qū)間是.………………(6分)
(3)①當時,,,所以在上是增函數(shù),關(guān)于的方程不可能有三個不相等的實數(shù)解.…………(2分)
②當時,由(1)知在和上分別是增函數(shù),在上是減函數(shù),當且僅當時,方程有三個不相等的實數(shù)解.
即.…………(5分)
令,在時是增函數(shù),故.…………(7分)
所以,實數(shù)的取值范圍是.…………(8分)
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十七選修4-4第一節(jié)練習卷(解析版) 題型:解答題
已知圓O1和圓O2的極坐標方程分別為ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程.
(2)求經(jīng)過兩圓交點的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十一第十章第八節(jié)練習卷(解析版) 題型:選擇題
設(shè)某項試驗的成功率是失敗率的2倍,用隨機變量X去描述1次試驗的成功次數(shù),則P(X=0)等于( )
(A)0 (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù),,其中.
(Ⅰ)求的極值;
(Ⅱ)若存在區(qū)間,使和在區(qū)間上具有相同的單調(diào)性,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
若,其中.
(1)當時,求函數(shù)在區(qū)間上的最大值;
(2)當時,若,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知二次函數(shù),關(guān)于x的不等式的解集為,其中m為非零常數(shù).設(shè).
(1)求a的值;
(2)如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:
查看答案和解析>>
科目:高中數(shù)學 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學試卷(解析版) 題型:選擇題
某幾何體的三視圖如右圖(其中側(cè)視圖中的圓弧是半圓),則該幾何體的表面積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com