15.已知圓錐的高為8,底面圓的直徑為12,則此圓錐的側(cè)面積是( 。
A.24πB.30πC.48πD.60π

分析 圓錐的側(cè)面積是一個扇形,根據(jù)扇形公式計算即可.

解答 解:底面圓的直徑為12,
則半徑為6,
∵圓錐的高為8,
根據(jù)勾股定理可知:圓錐的母線長為10.
根據(jù)周長公式可知:圓錐的底面周長=12π,
∴扇形面積=10×12π÷2=60π.
故選:D.

點評 本題主要考查了圓錐的側(cè)面積的計算方法.解題的關(guān)鍵是熟記圓錐的側(cè)面展開扇形的面積計算方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知${log_a}\frac{1}{2}<1$,則a∈$(0,\frac{1}{2})∪(1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平面向量$\overrightarrow{a}$=(2cos2x,sin2x),$\overrightarrow$=(cos2x,-2sin2x),f(x)=$\overrightarrow{a}$•$\overrightarrow$ 要得到y(tǒng)=2cos(2x-$\frac{π}{6}$)的圖象,只需要將y=f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線m:2x-y+2=0,n:ax-(a-1)y+1=0互相垂直,則a的值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-2|x-\frac{1}{2}|,0≤x≤1}\\{lo{g}_{2015}x,x>1}\end{array}\right.$,若直線y=m與函數(shù)y=f(x)的三個不同交點的橫坐標(biāo)依次為x1,x2,x3,則x1+x2+x3的取值范圍是(2,2016).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=2log2(2x+t)
(1)t=1時,解不等式f(x)≤2log2(x+1)
(2)t=4時,令g(x)=f(x)-2log2(x+1),求g(x)在x∈[0,1]上最大值與最小值.
(3)當(dāng)x∈[0,1]時,f(x)≥log2(x+1)恒成立,求t取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點A,B的坐標(biāo)分別是(-5,0),(5,0),直線AM,BM相交于點M,且它們的斜率之積是$\frac{4}{9}$,則點M的軌跡方程是( 。
A.$\frac{x^2}{25}+\frac{{9{y^2}}}{100}=1(x≠±5)$B.$\frac{x^2}{25}+\frac{{100{y^2}}}{9}=1(x≠±5)$
C.$\frac{x^2}{25}-\frac{{9{y^2}}}{100}=1(y≠0)$D.$\frac{x^2}{25}-\frac{{100{y^2}}}{9}=1(y≠0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}(x<1)}\\{lo{g}_{4}x(x≥1)}\end{array}\right.$.
(1)求f(0),f(2),f(f(3))的值;
(2)求不等式f(x)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+b}{{1+{x^2}}}$是定義在(-1,1)上的奇函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)解不等式 f(x2-1)+f(x)<0.

查看答案和解析>>

同步練習(xí)冊答案