【題目】對于給定的大于1的正整數(shù)n,設(shè),其中,且記滿足條件的所有x的和為,
(1)求(2)設(shè),求
【答案】(1).(2)
【解析】
試題分析:(1)實(shí)質(zhì)為讀題:當(dāng)時(shí),,,,,所以,,,,
(2)問題實(shí)質(zhì)為統(tǒng)計(jì)出現(xiàn)的次數(shù),中所有含項(xiàng)的和為;同理,中所有含項(xiàng)的和為;
中所有含項(xiàng)的和為;而中所有含項(xiàng)的和為;
所以;
,
試題解析:(1)當(dāng)時(shí),,,,,
故滿足條件的共有個(gè),
分別為:,,,,
它們的和是. 4分
(2)由題意得,各有種取法;有種取法,
由分步計(jì)數(shù)原理可得的不同取法共有,
即滿足條件的共有個(gè), 6分
當(dāng)分別取時(shí),各有種取法,有種取法,
故中所有含項(xiàng)的和為;
同理,中所有含項(xiàng)的和為;
中所有含項(xiàng)的和為;
中所有含項(xiàng)的和為;
當(dāng)分別取時(shí),各有種取法,
故中所有含項(xiàng)的和為;
所以;
故. 10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)用支出x萬元與銷售額y萬元之間有如下的對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)廣告費(fèi)用為12萬元時(shí),銷售收入y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E分別是BC,AB的中點(diǎn),PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P﹣BC﹣A的平面角為γ,則α,β,γ的大小關(guān)系是( )
A.α<β<γ
B.α<γ<β
C.β<α<γ
D.γ<β<α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x0 , x0+ 是函數(shù)f(x)=cos2(wx﹣ )﹣sin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)
(1)求 的值;
(2)若對 ,都有|f(x)﹣m|≤1,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點(diǎn).
(1)與BC平行的平面PDE交AC于點(diǎn)E,判斷點(diǎn)E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測試?yán)塾?jì)得分,如果的值不低于3分就認(rèn)為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。
(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;
(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C是橢圓M:上的三點(diǎn),其中點(diǎn)A是橢圓的右頂點(diǎn),BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC。
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長為9,求橢圓方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知拋物線的焦點(diǎn)為, 為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí), 為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個(gè)公共點(diǎn),
(ⅰ)證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(3,﹣4), =(6,﹣3), =(5﹣x,﹣3﹣y), =(4,1)
(1)若四邊形ABCD是平行四邊形,求x,y的值;
(2)若△ABC為等腰直角三角形,且∠B為直角,求x,y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com