精英家教網 > 高中數學 > 題目詳情
1.設集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}
(1)當m=1時,求A∩B;
(2)若B⊆A,求實數m的取值范圍.

分析 (1)集合A={x|-3≤x≤4},當m=1時,B={x|1<x<2},由此能求出A∩B.
(2)由B⊆A,分B=∅,和B≠∅兩種情況分類討論,能求出實數m的取值范圍.

解答 解:(1)∵集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}
∴當m=1時,B={x|1<x<2},
∴A∩B={x|1<x<2}.
(2)∵B⊆A,
∴當B=∅,即2m-1≥m+1,即m≥2時符合題意;
當B≠∅時,有$\left\{\begin{array}{l}{2m-1<m+1}\\{2m-1≥-3}\\{m+1<4}\end{array}\right.$,解得-1≤m<2.
綜上,實數m的取值范圍是[-1,+∞).

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集、子集性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

11.已知服從正態(tài)分布N(μ,σ2)的隨機變量,在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內取值的概率分別為68.3%,95.4%和99.7%.某大型國有企業(yè)為10000名員工定制工作服,設員工的身高(單位:cm)服從正態(tài)分布N(173,52),則適合身高在163~178cm范圍內員工穿的服裝大約要定制( 。
A.6830套B.9540套C.8185套D.9755套

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知在△ABC中,內角A,B,C的對邊分別為a,b,c,且acosC,bcosA,ccosA成等差數列.
(1)求角A的大;
(2)若a=3,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,求$|\overrightarrow{AD}|$的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.設數列{an}是公比為正數的等比數列,a1=2,a3=a2+4.
(1)求數列{an}的通項公式及前n項和Sn
(2)若數列{bn}是首項為1,公差為2的等差數列,設cn=an+bn,求數列{cn }的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知定義在(-∞,3]上單調減函數f(x)使得f(1+sin2x)≤f(a-2cosx)對一切實數x都對立,則a的取值范圍為( 。
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.下列四個結論正確的是( 。
A.lg2•lg3=lg5B.若sinθ=$\frac{1}{2}$,則θ=30°
C.$\root{n}{{a}^{n}}$=aD.logax-logay=loga$\frac{x}{y}$(x>0,y>0)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.若關于x的方程f(x)=mx2+3x-m-2有且只有一個零點在區(qū)間(0,1)內,則實數m的取值范圍是(-2,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.不等式${({\frac{1}{3}})^{x-1}}$≤81的解集為[-3,+∞)..

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知拋物線C:y2=4x的焦點為F,點M在拋物線C上,MQ垂直準線l于點Q,若△MQF是等邊三角形,則$\overrightarrow{FQ}•\overrightarrow{FM}$的值為8.

查看答案和解析>>

同步練習冊答案