【題目】新能源汽車是戰(zhàn)略性新興行業(yè)之一,發(fā)展新能源汽車是中國從汽車大國邁向汽車強國的必由之路,某汽車企業(yè)為了適應(yīng)市場需求引進了新能源汽車生產(chǎn)設(shè)備,2019年該企業(yè)新能源汽車的銷售量逐月平穩(wěn)增長,1,23月份的銷售量分別為1.2千臺,1.4千臺,1.8千臺,為估計以后每個月的銷售量,以這三個月的銷售量為依據(jù),用一個函數(shù)模擬汽車的月銷售量(單位:千臺)和月份之間的函數(shù)關(guān)系,有以下兩個函數(shù)模型可供選擇:

;②,如果4月份的銷售量為2.3千臺,選擇一個效果較好的函數(shù)進行模擬,則估計5月份的銷售量為________千臺.

【答案】3.2

【解析】

分別用1,2,3月份的銷售量代入兩個模擬函數(shù),求出待求系數(shù),進而求出四月份的銷售量,與2.3千臺比大小,即可得出結(jié)論.

代入得,

,得到,

解得,

;

代入得,

,整理得,,

解得,

,

用兩個模擬函數(shù)求出月份的銷售量,

更接近千臺,選擇作為模擬函數(shù),

(千臺).

故答案為:3.2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且)在上單調(diào)遞增,且關(guān)于的方程恰有兩個不相等的實數(shù)解,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年是中國改革開放的第40周年,為了充分認識新形勢下改革開放的時代性,某地的民調(diào)機構(gòu)隨機選取了該地的100名市民進行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.

(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;

(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調(diào)查,其中有名市民的年齡在的概率為.當最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于兩點.

1)證明:當取得最小值時,橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F(xiàn)為PD的中點.

(1)求證AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時間(年)(其中的關(guān)系為.為有效控制有害昆蟲數(shù)量、保護生態(tài)環(huán)境,環(huán)保部門通過實時監(jiān)控比值其中為常數(shù),且)來進行生態(tài)環(huán)境分析.

(1)當時,求比值取最小值時的值;

(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當比值不超過時不需要進行環(huán)境防護.為確保恰好3年不需要進行保護,求實數(shù)的取值范圍.為自然對數(shù)的底,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知扇形是一個觀光區(qū)的平面示意圖,其中扇形半徑為10米,,為了便于游客觀光和旅游,提出以下兩種設(shè)計方案:

1)如圖1,擬在觀光區(qū)內(nèi)規(guī)劃一條三角形形狀的道路,道路的一個頂點在弧上,另一頂點在半徑上,且,求周長的最大值;

2)如圖2,擬在觀光區(qū)內(nèi)規(guī)劃一個三角形區(qū)域種植花卉,三角形花圃的一個頂點在弧上,另兩個頂點在半徑上,且,求花圃面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年底,我國發(fā)明專利申請量已經(jīng)連續(xù)8年位居世界首位,下表是我國2012年至2018年發(fā)明專利申請量以及相關(guān)數(shù)據(jù).

總計

年代代碼

1

2

3

4

5

6

7

28

申請量(萬件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代碼1~7分別表示2012~2018.

1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達到最高,最高是多少?

2)建立關(guān)于的回歸直線方程(精確到0.01),并預(yù)測我國發(fā)明專利申請量突破200萬件的年份.

參考公式:.

查看答案和解析>>

同步練習(xí)冊答案