【題目】如圖,已知扇形是一個觀光區(qū)的平面示意圖,其中扇形半徑為10米,,為了便于游客觀光和旅游,提出以下兩種設(shè)計方案:

1)如圖1,擬在觀光區(qū)內(nèi)規(guī)劃一條三角形形狀的道路,道路的一個頂點在弧上,另一頂點在半徑上,且,求周長的最大值;

2)如圖2,擬在觀光區(qū)內(nèi)規(guī)劃一個三角形區(qū)域種植花卉,三角形花圃的一個頂點在弧上,另兩個頂點在半徑上,且,,求花圃面積的最大值.

【答案】1米(2

【解析】

1)要求周長的最大值,即求的最小值,設(shè),在中由正弦定理求出,利用三角恒等變換,將轉(zhuǎn)化為正弦型三角函數(shù),即可求出最值;或由,利用余弦定理結(jié)合基本不等式,即可求出的最值;

(2)中的面積與(1)中面積相等,利用余弦定理結(jié)合基本不等式,即可求出的最大值;或過,設(shè),通過,求出,進而求出,求出面積關(guān)于的三角函數(shù)關(guān)系,利用三角恒等變換,以及正弦函數(shù)的圖像求出其最值.

1)解法1:,,∴,

,設(shè),

中由正弦定理知

,

,

周長為

,

,∴時,周長最大值米,

解法2:中,因為

,,∴,

由余弦定理知: ,

,

,當且僅當,等號成立;

2)解法1:因為(2)中的面積與(1)中面積相等,

而在中,因為, ,,

,由余弦定理知:

,

,當且僅當,等號成立;

,

:花圃面積最大值,最大值時.

解法2:,∵,,

易知四邊形為矩形,連結(jié),設(shè),

,

中,

時,最大值為.

:花圃面積最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.

1)求橢圓的標準方程;

2)若直線與橢圓交于、兩點,線段的中點為為坐標原點,且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當時,求曲線處的切線方程;

2)若函數(shù)在區(qū)間上有極值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車是戰(zhàn)略性新興行業(yè)之一,發(fā)展新能源汽車是中國從汽車大國邁向汽車強國的必由之路,某汽車企業(yè)為了適應(yīng)市場需求引進了新能源汽車生產(chǎn)設(shè)備,2019年該企業(yè)新能源汽車的銷售量逐月平穩(wěn)增長,1,23月份的銷售量分別為1.2千臺,1.4千臺,1.8千臺,為估計以后每個月的銷售量,以這三個月的銷售量為依據(jù),用一個函數(shù)模擬汽車的月銷售量(單位:千臺)和月份之間的函數(shù)關(guān)系,有以下兩個函數(shù)模型可供選擇:

;②,如果4月份的銷售量為2.3千臺,選擇一個效果較好的函數(shù)進行模擬,則估計5月份的銷售量為________千臺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;

(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格(元)和時間(天)()的關(guān)系如圖所示

1)寫出銷售價格(元)和時間(天)的函數(shù)解析式;

2)若日銷售量(件)與時間(天)的函數(shù)關(guān)系是),求該商品的日銷售金額(元)與時間(天)的函數(shù)解析式;

3)問該產(chǎn)品投放市場第幾天時,日銷售金額最高?最高值為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1l2的交點為P,當k變化時,P的軌跡為曲線C.

(1)寫出C的普通方程;

(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設(shè)l3ρ(cosθ+sinθ) =0,Ml3C的交點,求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(已知數(shù)列{}滿足:為數(shù)列的前項和.

1 {}是遞增數(shù)列,且成等差數(shù)列,求的值;

2 ,且{}是遞增數(shù)列,{}是遞減數(shù)列,求數(shù)列{}的通項公式;

3 ,對于給定的正整數(shù),是否存在一個滿足條件的數(shù)列,使得,如果存在,給出一個滿足條件的數(shù)列,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:

函數(shù)的最大值為1;

,的否定是

為銳角三角形,則有

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件.

其中錯誤的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案