A. | [-$\frac{{\sqrt{2}}}{2},0$] | B. | [-1,0] | C. | [-$\sqrt{2},0$] | D. | [-$\sqrt{3},0$] |
分析 先把已知的函數(shù)兩邊平方結(jié)合同角三角函數(shù)的關(guān)系式以及基本不等式得到 y2≤1,再結(jié)合正弦函數(shù)本身的范圍即可得到答案.
解答 解:因為f(x)=$\frac{{2sin\frac{x}{2}cos\frac{x}{2}-1}}{{\sqrt{3-2cosx-4sin\frac{x}{2}cos\frac{x}{2}}}}$=$\frac{sinx-1}{\sqrt{3-2cosx-2sinx}}$,
所以y2=$\frac{si{n}^{2}x-2sinx+1}{3-2cosx-2sinx}$=$\frac{1-co{s}^{2}x-2sinx+1}{3-2cosx-2sinx}$=$\frac{3-(co{s}^{2}x+1)-2sinx}{3-2cosx-2sinx}$≤$\frac{3-2cosx-2sinx}{3-2cosx-2sinx}$=1.
∴|y|≤1⇒-1≤y≤1.
∵0≤x≤2π時,sinx-1≤0.
∴-1≤y≤0.即函數(shù)f(x)=$\frac{{2sin\frac{x}{2}cos\frac{x}{2}-1}}{{\sqrt{3-2cosx-4sin\frac{x}{2}cos\frac{x}{2}}}}$(0≤x≤2π)的值域是[-1,0].
故選:B.
點評 本題主要考查運用同角三角函數(shù)的基本關(guān)系進行化簡求值.解決這一類型題目的關(guān)鍵在于對公式的熟練掌握以及靈活運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com