【題目】已知拋物線的焦點為,直線,點,是拋物線上的動點.
(1)求的最小值及相應點的坐標;
(2)點到直線距離的最小值及相應點的坐標;
(3)直線過點與拋物線交于、兩點,交直線于點,若,,求的值.
【答案】(1)3,;(2),;(3)0.
【解析】
(1)根據(jù)拋物線的定義轉(zhuǎn)換線段關(guān)系求解即可.
(2)設(shè)再求出點到線的距離公式分析最值即可.
(3)設(shè)直線方程為,再聯(lián)立直線與拋物線和,分別表示出的坐標,再根據(jù),表達出再代入韋達定理化簡即可.
(1) 作垂直于準線于,則,由圖易得當直線軸時取得最小值 ,此時與橫坐標相同,此時.
即當時取得最小值3.
(2) 設(shè)則點到直線距離
.當時取最小值.
故當時到直線距離的最小值取.
(3)顯然直線有斜率,設(shè)直線方程為..
聯(lián)立.則.
.
又 ,故,故,
,故,故.
所以.
又
.故
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設(shè)曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在第十五次全國國民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.
(1)填寫下面列聯(lián)表,并判斷是否有的把握認為,經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計 |
(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出人,參加一次閱讀交流活動,若活動主辦方從這位居民中隨機選取人作交流發(fā)言,求被選中的位居民都是經(jīng)常閱讀居民的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當時,設(shè)函數(shù)的圖象與x軸的交點為,,曲線在,兩點處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.則下列結(jié)論中:
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命題的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高中年級開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機抽取了5名學生的學分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學生學分的標準差,則_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:和點,P是圓上一點,線段BP的垂直平分線交CP于M點,則M點的軌跡方程為______;若直線l與M點的軌跡相交,且相交弦的中點為,則直線l的方程是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com