15.已知整數(shù)對的序列為(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第70數(shù)對是( 。
A.(3,10)B.(4,9)C.(5,8)D.(6,7)

分析 根據(jù)括號內(nèi)的兩個(gè)數(shù)的和的變化情況找出規(guī)律,然后找出第70對數(shù)的兩個(gè)數(shù)的和的值以及是這個(gè)和值的第幾組,然后寫出即可.

解答 解:(1,1),兩數(shù)的和為2,共1個(gè),
(1,2),(2,1),兩數(shù)的和為3,共2個(gè),
(1,3),(2,2),(3,1),兩數(shù)的和為4,共3個(gè),
(1,4),(2,3),(3,2),(4,1),兩數(shù)的和為5,共4個(gè)

(1,n),(2,n-1),(3,n-2),…(n,1),兩數(shù)的和為n+1,共n個(gè)
∵1+2+3+4+5+6+7+8+9+10+11=66,
∴第70對數(shù)是兩個(gè)數(shù)的和為13的數(shù)對中,
對應(yīng)的數(shù)對為(1,12),(2,11),(3,10),(4,9)…(12,1),
則第70對數(shù)為(4,9),
故選:B

點(diǎn)評 本題是對數(shù)字變化規(guī)律的考查,規(guī)律比較隱蔽,觀察出括號內(nèi)的兩個(gè)數(shù)的和的變化情況是解題的關(guān)鍵.考查學(xué)生的歸納能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求直角坐標(biāo)系下曲線C1與曲線C2的方程;
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=lg(10x+1)+ax是偶函數(shù),g(x)=$\frac{{4}^{x}-b}{{2}^{x}}$是奇函數(shù),則a+b的值是(  )
A.0.5B.1C.-0.5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列結(jié)論:
①若扇形的中心角為2,半徑為1,則該扇形的面積為1;
②函數(shù)y=cos2x-sin2x(x∈R)是偶函數(shù);
③點(diǎn)($\frac{π}{8}$,0)是函數(shù)y=sin(2x+$\frac{5π}{4}$)圖象的一個(gè)對稱中心;
④函數(shù)y=cosx-sinx在[0,$\frac{π}{2}$]上是減函數(shù),
其中正確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(1-x)(1+x)2016展開式中含x項(xiàng)的系數(shù)為2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2sinxcosx+$\frac{cos2x}{2}$+3sin2x$+\frac{1}{2}$,x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,∠BAC=$\frac{2π}{3}$,圓M與AB,AC分別相切于點(diǎn)D,E,AD=1,點(diǎn)P是圓M及其內(nèi)部任意一點(diǎn),且$\overrightarrow{AP}$=x$\overrightarrow{AD}$+y$\overrightarrow{AE}$(x,y∈R),則x+y的取值范圍是[4-2$\sqrt{3}$,4+2$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13….該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)都是1,從第三個(gè)數(shù)起,每個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列{an}稱為“斐波那契數(shù)列”,則a2016a2018-(a20172等于( 。
A.1B.-1C.2017D.-2107

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)A(1,-2),若向量$\overrightarrow{AB}$與$\overrightarrow{a}$=(2,3)同向,|$\overrightarrow{AB}$|=2$\sqrt{13}$,則點(diǎn)B的坐標(biāo)為( 。
A.(4,6)B.(-4,-6)C.(5,4)D.(-5,-4)

查看答案和解析>>

同步練習(xí)冊答案