精英家教網(wǎng)如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=2,O為AC的中點(diǎn),PO⊥平面ABCD,PO=2,M為PD的中點(diǎn),
(1)證明:AD⊥平面PAC;
(2)求直線AM與平面ABCD所成角的正弦值.
分析:(1)由∠ADC=45°,且AD=AC=2,易得AD⊥AC,PO⊥AD,根據(jù)線面垂直的判定定理可證;
(2)取DO中點(diǎn)N,由PO⊥平面ABCD,可得MN⊥平面ABCD,從而可得∠MAN是直線AM與平面ABCD所成的角.在Rt△ANM中求解即可.
解答:精英家教網(wǎng)(1)證明:∵∠ADC=45°,且AD=AC=2,
∴∠DAC=90°,即AD⊥AC
又∵PO⊥平面ABCD,AD?平面ABCD,
∴PO⊥AD,
又∵AC∩PO=O,
∴AD⊥平面PAC
(2)解:取DO中點(diǎn)N,連接MN,AN
∵M(jìn)為PD的中點(diǎn),∴MN∥PO,且MN=
1
2
PO=1,
∵PO⊥平面ABCD,∴MN⊥平面ABCD
∴∠MAN是直線AM與平面ABCD所成的角.
在Rt△DAO中,∵AD=2,AO=1,∠DAO=90°,∴DO=
5
,
∴AN=
1
2
DO=
5
2

在Rt△ANM中,sin∠MAN=
MN
MN2+AN2
=
2
3

即直線AM與平面ABCD所成角的正弦值為
2
3
點(diǎn)評(píng):本題主要考查直線與平面平行、直線與平面垂直、直線與平面所成的角等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力、推理論證能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大小;當(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案