【題目】對于曲線:上原點(diǎn)之外的每一點(diǎn),求證存在過的直線與橢圓相交于兩點(diǎn)、,使與均為等腰三角形.
【答案】見解析
【解析】
首先說明,上的每一點(diǎn)都在的內(nèi)部,從而,過的直線均與相交于兩點(diǎn).事實(shí)上,的方程可變形為.
去掉原點(diǎn)有(原點(diǎn)顯然在橢圓內(nèi)部),. ①
這表明,上的點(diǎn)在橢圓內(nèi)部.
現(xiàn)取上的點(diǎn)(不同時(shí)為0).過作直線 ②
代入橢圓方程得關(guān)于的二次方程
③
由①知,方程③恒有兩解,對應(yīng)著直線與橢圓的交點(diǎn)、.為使為的中點(diǎn),我們令.
從而,即 ④
且. ⑤
把①、⑤代入方程③,得.
有.
又由于交點(diǎn)
滿足
⑥
最后一式為0是因?yàn)?/span>在上.而⑥式表明.
可見,對于上的點(diǎn),存在過的直線,與相交于兩點(diǎn)、,使為直角三角形且為斜邊的中點(diǎn).從而,與均為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x=6n﹣1,n∈N*},B={x|x=2n,n∈N*},將A∪B的所有元素從小到大依次排列構(gòu)成一個(gè)數(shù)列{an}.記Sn為數(shù)列{an}的前n項(xiàng)和,若Sm=3014,則正整數(shù)m值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱柱中,底面邊長為,側(cè)棱長為.
(1)求證:平面平面;
(2)求直線與平面所成的角的正弦值;
(3)設(shè)為截面內(nèi)-點(diǎn)(不包括邊界),求到面,面,面的距離平方和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左頂點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),證明:到直線的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;
(2)存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍;
(3)若方程在上有且僅有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“石頭、剪刀、布”是一種廣泛流傳于我國民間的古老游戲,其規(guī)則是:用三種不同的手勢分別表示石頭、剪刀、布;兩個(gè)玩家同時(shí)出示各自手勢次記為次游戲,“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”;雙方出示的手勢相同時(shí),不分勝負(fù).現(xiàn)假設(shè)玩家甲、乙雙方在游戲時(shí)出示三種手勢是等可能的.
(1)求在次游戲中玩家甲勝玩家乙的概率;
(2)若玩家甲、乙雙方共進(jìn)行了次游戲,其中玩家甲勝玩家乙的次數(shù)記作隨機(jī)變量,求的分布列及.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com