【題目】某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(1)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(2)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(3)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.
【答案】
(1)解:∵某保險(xiǎn)的基本保費(fèi)為a(單位:元),
上年度出險(xiǎn)次數(shù)大于等于2時,續(xù)保人本年度的保費(fèi)高于基本保費(fèi),
∴由該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率統(tǒng)計(jì)表得:
一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率:
p1=1﹣0.30﹣0.15=0.55.
(2)解:設(shè)事件A表示“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,事件B表示“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出60%”,
由題意P(A)=0.55,P(AB)=0.10+0.05=0.15,
由題意得若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),
則其保費(fèi)比基本保費(fèi)高出60%的概率:
p2=P(B|A)= = = .
(3)解:由題意,續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為:
=1.23,
∴續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為1.23
【解析】(1)上年度出險(xiǎn)次數(shù)大于等于2時,續(xù)保人本年度的保費(fèi)高于基本保費(fèi),由此利用該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率統(tǒng)計(jì)表根據(jù)對立事件概率計(jì)算公式能求出一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率.(2)設(shè)事件A表示“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,事件B表示“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出60%”,由題意求出P(A),P(AB),由此利用條件概率能求出若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),則其保費(fèi)比基本保費(fèi)高出60%的概率.(3)由題意,能求出續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點(diǎn)數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運(yùn)數(shù)字.
(1)求你的幸運(yùn)數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運(yùn)數(shù)字則記0分,求得分X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為上任一點(diǎn)在軸上的射影為中點(diǎn)為,.
(1)求動點(diǎn)的軌跡的方程;
(2)直線過與從下到上依次交于,與交于,直線過與從下到上依次交于,與交于,,的斜率之積為,設(shè)的面積分別為,是否存在使得成等比數(shù)列?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求的最大值和最小值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan = ;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x﹣1﹣alnx,g(x)= ,a<0,且對任意x1 , x2∈[3,4](x1≠x2),|f(x1)﹣f(x2)|<| ﹣ |的恒成立,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點(diǎn)M
(1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
(2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間[﹣3,3]上的單調(diào)函數(shù)f(x)滿足:對任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,則在[﹣3,3]上隨機(jī)取一個實(shí)數(shù)x,使得f(x)的值不小于4的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com