【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.

(1)設P是上的一點,且AP⊥BE,求∠CBP的大;

(2)當AB=3,AD=2時,求二面角E-AG-C的大小.

【答案】(1);(2)

【解析】試題分析: (1)(1),直接證明BE⊥平面ABP得到BE⊥BP,從而求出∠CBP的大小. (2)第(2)問,可以利用幾何法求,也可以利用向量法求解.

試題解析:

(1)

因為AP⊥BE,AB⊥BE,AB,AP平面ABP,AB∩AP=A,所以BE⊥平面ABP.

又BP平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.

(2)方法一:如圖,取的中點H,連接EH,GH,CH.

因為∠EBC=120°,所以四邊形BEHC為菱形,

所以AE=GE=AC=GC=.

取AG的中點M,連接EM,CM,EC,

則EM⊥AG,CM⊥AG,

所以∠EMC為所求二面角的平面角.

又AM=1,所以EM=CM=.

在△BEC中,由于∠EBC=120°,

由余弦定理得EC2=22+22-2×2×2×cos 120°=12,

所以EC=2,所以△EMC為等邊三角形,

故所求的角為60°.

方法二:

以B為坐標原點,分別以BE,BP,BA所在的直線為x,y,z軸,建立如圖所示的空間直角坐標系B-xyz.

由題意得A(0,0,3),E(2,0,0),G(1, ,3),C(-1, ,0),

=(2,0,-3), =(1, ,0), =(2,0,3).

=(x1,y1,z1)是平面AEG的一個法向量,

可得

取z1=2,可得平面AEG的一個法向量=(3,- ,2).

=(x2,y2,z2)是平面ACG的一個法向量.

可得

取z2=-2,可得平面ACG的一個法向量n=(3,- ,-2).

所以cos〈〉=.

故所求的角為60°.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點的動直線相交于,與橢圓分別交于不同四點,直線的斜率滿足.已知當軸重合時,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標并求出此定值;若不存在,說明理由.

【答案】(Ⅰ);.

【解析】試題分析:(1)當軸重合時,垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標化,可得點的軌跡是橢圓,從而求得定點和點.

試題解析:軸重合時,, ,所以垂直于軸,得,, ,橢圓的方程為.

焦點坐標分別為, 當直線斜率不存在時,點坐標為;

當直線斜率存在時,設斜率分別為, , 得:

, 所以:,, 則:

. 同理:, 因為

, 所以, , 由題意知, 所以

, 設,則,即,由當直線斜率不存在時,點坐標為也滿足此方程,所以點在橢圓.存在點和點,使得為定值,定值為.

考點:圓錐曲線的定義,性質(zhì),方程.

【方法點晴】本題是對圓錐曲線的綜合應用進行考查,第一問通過兩個特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關鍵是從這個角度出發(fā),把坐標化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.

型】解答
束】
21

【題目】已知,,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個零點為,記,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解學生一次考試后數(shù)學、物理兩個科目的成績情況,從中隨機抽取了25位考生的成績進行統(tǒng)計分析.25位考生的數(shù)學成績已經(jīng)統(tǒng)計在莖葉圖中,物理成績?nèi)缦拢?/span>

)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計;

)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學成績的頻數(shù)分布表及數(shù)學成績的頻率分布直方圖;

數(shù)學成績分組

[50,60

[6070

[70,80

[8090

[90,100

[100110

[110,120]

頻數(shù)

)設上述樣本中第i位考生的數(shù)學、物理成績分別為xi,yii=1,2,3,25).通過對樣本數(shù)據(jù)進行初步處理發(fā)現(xiàn):數(shù)學、物理成績具有線性相關關系,得到:=86=64,xi-)(yi-=4698,xi-2=5524≈0.85.求y關于x的線性回歸方程,并據(jù)此預測當某考生的數(shù)學成績?yōu)?/span>100分時,該考生的物理成績(精確到1分).

附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:=,=-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學數(shù)學學院擬從往年的智慧隊和理想隊中選拔4名大學生組成志愿者招募宣傳隊.往年的智慧對和理想隊的構成數(shù)據(jù)如下表所示,現(xiàn)要求選出的4名大學生中兩隊中的大學生都要有.

(1)求選出的4名大學生僅有1名女生的概率;

(2)記選出的4名大學生中女生的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醬油廠對新品種醬油進行了定價,在各超市得到售價與銷售量的數(shù)據(jù)如下表:

單價(元)

5

5.2

5.4

5.6

5.8

6

銷量(瓶)

9.0

8.4

8.3

8.0

7.5

6.8

(1)求售價與銷售量的回歸直線方程;( ,

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/瓶,為使工廠獲得最大利潤(利潤=銷售收入成本),該產(chǎn)品的單價應定為多少元?

相關公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點P在平面ABC內(nèi)的正投影為點D,D在平面PAB內(nèi)的正投影為點E,連結PE并延長交AB于點G.

)證明:GAB的中點;

)在圖中作出點E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在上海高考改革方案中,要求每位考生必須在物理、化學、生物、政治、歷史、地理六門學科中選擇三門參加等級考試,受各因素影響,小李同學決定選擇物理,并在生物和地理中至少選擇一門.

1)小李同學共有多少種不同的選科方案?

2)若小吳同學已確定選擇生物和地理,求小吳同學與小李同學選科方案相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了解本市萬名學生的漢字書寫水平,在全市范圍內(nèi)進行了漢字聽寫考試,發(fā)現(xiàn)其成績服從正態(tài)分布,現(xiàn)從某校隨機抽取了名學生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.

1)估算該校名學生成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)求這名學生成績在內(nèi)的人數(shù);

3)現(xiàn)從該校名考生成績在的學生中隨機抽取兩人,該兩人成績排名(從高到低)在全市前名的人數(shù)記為,求的分布列和數(shù)學期望.

參考數(shù)據(jù):若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)

(1)若是定義域上的單調(diào)函數(shù),求的取值范圍.

(2)設,分別為的極大值和極小值,若,求取值范圍.

查看答案和解析>>

同步練習冊答案