【題目】某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個(gè)科目的成績(jī)情況,從中隨機(jī)抽取了25位考生的成績(jī)進(jìn)行統(tǒng)計(jì)分析.25位考生的數(shù)學(xué)成績(jī)已經(jīng)統(tǒng)計(jì)在莖葉圖中,物理成績(jī)?nèi)缦拢?/span>
(Ⅰ)請(qǐng)根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績(jī)統(tǒng)計(jì);
(Ⅱ)請(qǐng)根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績(jī)的頻數(shù)分布表及數(shù)學(xué)成績(jī)的頻率分布直方圖;
數(shù)學(xué)成績(jī)分組 | [50,60﹚ | [60,70﹚ | [70,80﹚ | [80,90﹚ | [90,100﹚ | [100,110﹚ | [110,120] |
頻數(shù) |
(Ⅲ)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績(jī)分別為xi,yi(i=1,2,3,…,25).通過對(duì)樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績(jī)具有線性相關(guān)關(guān)系,得到:=86,=64,(xi-)(yi-)=4698,(xi-)2=5524,≈0.85.求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測(cè)當(dāng)某考生的數(shù)學(xué)成績(jī)?yōu)?/span>100分時(shí),該考生的物理成績(jī)(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:=,=-.
【答案】(Ⅰ)詳見解析(Ⅱ)頻數(shù)分布表,分布圖見解析(Ⅲ)y=0.85x-9.1,預(yù)測(cè)當(dāng)某考生的數(shù)學(xué)成績(jī)?yōu)?/span>100分時(shí),該考生的物理成績(jī)?yōu)?/span>76分
【解析】
(Ⅰ)以十位數(shù)為莖,以個(gè)位數(shù)為葉填寫;
(Ⅱ)根據(jù)數(shù)學(xué)成績(jī)的莖葉圖計(jì)算各組的頻數(shù),并計(jì)算頻率與組距的商作為直方圖小矩形的高;
(Ⅲ)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程,利用回歸方程進(jìn)行估計(jì).
解:(Ⅰ)物理成績(jī)的莖葉圖如圖所示;
(Ⅱ)數(shù)學(xué)成績(jī)的頻數(shù)分布表;
數(shù)學(xué)成績(jī)分組 | [50,60﹚ | [60,70﹚ | [70,80﹚ | [80,90﹚ | [90,100﹚ | [100,110﹚ | [110,120] |
頻數(shù) | 1 | 2 | 3 | 7 | 6 | 5 | 1 |
(Ⅲ)由已知得b=0.85,a=64-0.85×86=-9.1,
∴y=0.85x-9.1,
∴x=100時(shí),y=75.9≈76,
預(yù)測(cè)當(dāng)某考生的數(shù)學(xué)成績(jī)?yōu)?/span>100分時(shí),該考生的物理成績(jī)?yōu)?/span>76分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.
(1)求f(x)的解析式
(2)是否存在實(shí)數(shù)m,使得在[-1,3]上f(x)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 且是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若,對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè) 且,若,是否存在實(shí)數(shù)使函數(shù)在上的最大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅游業(yè)作為一個(gè)第三產(chǎn)業(yè),時(shí)間性和季節(jié)性非常強(qiáng),每年11月份來臨,全國各地就相繼進(jìn)入旅游淡季,很多旅游景區(qū)就變得門庭冷落.為改變這種局面,某旅游公司借助一自媒體平臺(tái)做宣傳推廣,銷售特惠旅游產(chǎn)品.該公司統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)產(chǎn)品的銷售數(shù)量,用表示活動(dòng)推出的天數(shù),用表示產(chǎn)品的銷售數(shù)量(單位:百件),統(tǒng)計(jì)數(shù)據(jù)如下表所示.
根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點(diǎn)圖,根據(jù)已有的函數(shù)知識(shí),發(fā)現(xiàn)樣本點(diǎn)分布在某一條指數(shù)型函數(shù)的周圍.為求出該回歸方程,相關(guān)人員確定的研究方案是:先用其中5個(gè)數(shù)據(jù)建立關(guān)于的回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).試回答下列問題:
(1)現(xiàn)令,若選取的是這5組數(shù)據(jù),已知,,請(qǐng)求出關(guān)于的線性回歸方程(結(jié)果保留一位有效數(shù)字);
(2)若由回歸方程得到的估計(jì)數(shù)據(jù)與選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過,則認(rèn)為得到的回歸方程是可靠的,試問(1)中所得的回歸方程是否可靠?
參考公式及數(shù)據(jù):對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為, ;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),過原點(diǎn)的兩條直線分別與曲線交于異于原點(diǎn)的、兩點(diǎn),且,其中的傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求和的極坐標(biāo)方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有100名工人接受了生產(chǎn)1000臺(tái)某產(chǎn)品的總?cè)蝿?wù),每臺(tái)產(chǎn)品由9個(gè)甲型裝置和3個(gè)乙型裝置配套組成,每個(gè)工人每小時(shí)能加工完成1個(gè)甲型裝置或3個(gè)乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時(shí)間為小時(shí),其余工人加工完乙型裝置所需時(shí)間為小時(shí),則生產(chǎn)1000臺(tái)某產(chǎn)品的總加工時(shí)間y是一個(gè)關(guān)于x的函數(shù)。
(1)求y關(guān)于x的函數(shù)解析式;
(2)如何分配工人才能使生產(chǎn)1000臺(tái)某產(chǎn)品的總加工時(shí)間最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,進(jìn)行了主題分別為“運(yùn)算”、“推理”、“想象”、“建!彼膱(chǎng)競(jìng)賽.規(guī)定:每場(chǎng)競(jìng)賽前三名得分分別為、、(,且、、),選手的最終得分為各場(chǎng)得分之和.最終甲、乙、丙三人包攬了每場(chǎng)競(jìng)賽的前三名,在四場(chǎng)競(jìng)賽中,已知甲最終得分為分,乙最終得分為分,丙最終得分為分,且乙在“運(yùn)算”這場(chǎng)競(jìng)賽中獲得了第一名,那么“運(yùn)算”這場(chǎng)競(jìng)賽的第三名是( )
A.甲B.乙C.丙D.甲和丙都有可能
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com