已知向量在同一平面內(nèi),若對于這一平面內(nèi)的任意向量,都有且只有一對實數(shù),使,則實數(shù)的取值范圍是(     )

A.              B.           C.             D.

 

【答案】

B

【解析】

試題分析:對于平面內(nèi)的任意向量,都有且只有一對實數(shù),使,則不共線,由于,,解得.

考點:共線向量、平面向量的基底

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個命題:
①若
a
,
b
為一平面內(nèi)兩非零向量,則
a
b
是|
a
+
b
|=|
a
-
b
|的充要條件;
②一平面內(nèi)兩條曲線的方程分別是f1(x,y)=0,f2(x,y)=0,它們的交點是P(x0,y0),則方程f1(x,y)+f2(x,y)=0的曲線經(jīng)過點P;
③經(jīng)過一定點且和一條已知直線垂直的所有直線都在同一平面內(nèi);
lim
x→1
x2+b
x-1
=2,則b=-1.
其中真命題的序號是
 
(把符合要求的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
OA
、
OB
OC
、
OD
滿足:
OA
OB
OC
OD
(α,β,γ∈R)
,B、C、D為不共線三點,給出下列命題:
①若α=
3
2
,β=
1
2
,γ=-1
,則A、B、C、D四點在同一平面上;
②當(dāng)α>0,β>0,γ=
2
時,若|
OA
|=
3
|
OB
|=|
OC
|=|
OD
|=1
,
OB
OC
>=
6
,
OD
OB
>=<
OD
,
OC
>=
π
2
,則α+β的最大值為
6
-
2
;
③已知正項等差數(shù)列an(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三點共線,但O點不在直線BC上,則
1
a3
+
4
a2008
的最小值為9;
④若α+β=1(αβ≠0),γ=0,則A、B、C三點共線且A分
BC
所成的比λ一定為
α
β

其中你認(rèn)為正確的所有命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在同一平面內(nèi)
OA
OB
、
OC
滿足條件:
OA
+
OB
+
OC
=
0
,|
OA
|=|
OB
|=|
OC
|≠0

(I)求證:△ABC為正三角形;
(II)類比于(I),在同一平面內(nèi),若向量
OA
,
OB
,
OC
,
OD
滿足條件:
OA
+
OB
+
OC
=
0
|
OA
|=|
OB
|=|
OC
|=|
OD
|≠0
,試判斷四邊形ABCD的形狀,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泉州模擬)已知向量
a
=(1,2),
b
=(m-1,m+3)在同一平面內(nèi),若對于這一平面內(nèi)的任意向量
c
,都有且只有一對實數(shù)λ,μ,使
c
a
b
,則實數(shù)m的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案