某公司承擔(dān)了每天至少搬運(yùn)280噸水泥的任務(wù),已知該公司有6輛A型卡車和8輛B型卡車.又已知A型卡車每天每輛的運(yùn)載量為30噸,成本費(fèi)為0.9千元;B型卡車每天每輛的運(yùn)載量為40噸,成本費(fèi)為1千元.
(1)如果你是公司的經(jīng)理,為使公司所花的成本費(fèi)最小,每天應(yīng)派出A型卡車、B型卡車各多少輛?
(2)在(1)的所求區(qū)域內(nèi),求目標(biāo)函數(shù)的最大值和最小值.
(1)型卡車0輛,型卡車輛;(2)在處取最大值,在處取最小值.
解析試題分析:(1)根據(jù)題意可得出關(guān)于A型卡車、B型卡車的一組限制條件,由目標(biāo)函數(shù)化簡(jiǎn)得,平移直線可得當(dāng)直線經(jīng)過點(diǎn)時(shí),直線在軸上的截距最小,即取最小值,為;(2)由目標(biāo)函數(shù)可聯(lián)想到兩點(diǎn)確定的斜率坐標(biāo)公式,這是兩點(diǎn)之間的斜率,結(jié)合圖象不難發(fā)現(xiàn),平移直線可得當(dāng)直線過點(diǎn)處取最大值,過點(diǎn)處取最小值.
試題解析:(1)設(shè)公司每天派出型卡車輛,型卡車輛,公司所花的成本費(fèi)為千元,根據(jù)題意,得 ,目標(biāo)函數(shù) ,作出該不等式組表示的可行域,如下圖.
考慮 ,變形為 ,這是以 為斜率,為軸上的截距的平行直線族.
經(jīng)過可行域,平行移動(dòng)直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),直線在軸上的截距最小,即取最小值,為
答:公司每天派出型卡車0輛,型卡車輛時(shí),所花的成本費(fèi)最低,為千元.
(2)在處取最大值,在處取最小值.
考點(diǎn):1.簡(jiǎn)單的線性規(guī)劃;2.直線方程;3.兩點(diǎn)的斜率坐標(biāo)公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤(rùn)2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少?gòu)垼拍塬@得利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為保增長(zhǎng)、促發(fā)展,某地計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,根據(jù)市場(chǎng)調(diào)研,知甲項(xiàng)目每投資100萬元需要配套電能2萬千瓦時(shí),可提供就業(yè)崗位24個(gè),GDP增長(zhǎng)260萬元;乙項(xiàng)目每投資100萬元需要配套電能4萬千瓦時(shí),可提供就業(yè)崗位36個(gè),GDP增長(zhǎng)200萬元.已知該地為甲、乙兩個(gè)項(xiàng)目最多可投資3000萬元,配套電能100萬千瓦時(shí),若要求兩個(gè)項(xiàng)目能提供的就業(yè)崗位不少于840個(gè),問如何安排甲、乙兩個(gè)項(xiàng)目的投資額,才能使GDP增長(zhǎng)的最多.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司計(jì)劃2013年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告總費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大。已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:
資 金 | 每臺(tái)單位產(chǎn)品所需資金(百元) | 月資金供應(yīng)量 (百元) | |
空調(diào)機(jī) | 洗衣機(jī) | ||
成 本 | 30 | 20 | 300 |
勞動(dòng)力(工資) | 5 | 10 | 110 |
每臺(tái)產(chǎn)品利潤(rùn) | 6 | 8 | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn),且.
(1)若點(diǎn)的坐標(biāo)為(-),求的值;
(2)若點(diǎn)為平面區(qū)域上的一個(gè)動(dòng)點(diǎn),試確定角的取值范圍,并求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若1<x<10,下面不等式中正確的是 ( )
A.(lgx)2<lgx2<lg(lgx) |
B.lgx2<(lgx)2<lg(lgx) |
C.(lgx)2<lg(lgx)<lgx2 |
D.lg(lgx)<(lgx)2<lgx2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com