7.如圖所示,△ABC內(nèi)接于⊙O,AD是⊙O的切線,切點為A,∠DAC的平分線交⊙O于E,且滿足AB⊥AE.
(I)證明:∠BAC=∠BCA;
(Ⅱ)設(shè)⊙O的半徑為1,AC=$\sqrt{3}$,CE的延長線交AD于點F,求△AFC外接圓的面積.

分析 (I)連接BE,AO,設(shè)BE與AC交于H,由題意可得BE為直徑,運用弦切角定理和角平分線的定義,可得∠BAC=∠BCA;
(Ⅱ)由正弦定理求得∠ABC=60°,進而得到ABC為等邊三角形,可得BC∥AD,可得AC為△ACF的外接圓的直徑,可得半徑和圓的面積.

解答 解:(I)證明:連接BE,AO,設(shè)BE與AC交于H,
AB⊥AE,可得BE為直徑,經(jīng)過點O,
可得∠BCE=90°,
由弦切角定理,可得∠FAE=∠ACE,
由AE為角平分線,可得∠FAE=∠CAE,
即∠CAE=∠ACE,
由∠BAC+∠CAE=∠ACE+∠BCA=90°,
可得∠BAC=∠BCA;
(Ⅱ)⊙O的半徑為r=1,AC=$\sqrt{3}$,
由正弦定理可得sin∠ABC=$\frac{AC}{2r}$=$\frac{\sqrt{3}}{2}$,
可得∠ABC=60°,
由(Ⅰ)可得△ABC為等邊三角形,
AO⊥BC,又AO⊥AD,
可得BC∥AD,
由∠BCE=90°,可得CF⊥AD,
△AFC外接圓的直徑為AC,
半徑為$\frac{\sqrt{3}}{2}$,面積為$\frac{3}{4}$π.

點評 本題考查圓的弦切角定理、圓的直徑所對的圓周角為直角、正弦定理的運用,考查推理能力和運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}\begin{array}{l}{x+\frac{1}{x},}{x>0}\end{array}\\ \begin{array}{l}{x{,_{\;}}}{\;}{x<0}\end{array}\end{array}$,若關(guān)于x的方程[f(x)]2-(a+3)f(x)+a=0恰有3個不同的實數(shù)根,則實數(shù)a的取值范圍是(-2,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC相交于點D,AE=2BD=2.
(1)求證:EA=ED;
(2)求DC•BE的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大值;
(3)求f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在△ABC中,∠BAC的平分線交BC于點D,交△ABC的外接圓于點E,延長AC交△DCE的外接圓于點F,DF=$\sqrt{14}$
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)f(x)=x3+bx2+cx+d,又k是一個常數(shù),已知當k<0或k>4時,f(x)-k=0只有一個實根;當0<k<4時,f(x)-k=0有三個相異實根,現(xiàn)給出下列命題:
①f(x)-4=0和f′(x)=0有一個相同的實根    
②f(x)=0和f′(x)=0有一個相同的實根
③f(x)+3=0的任一實根大于f(x)-1=0的任一實根 
④f(x)+5=0的任一實根小于f(x)-2=0的任一實根.
其中錯誤的命題的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求證:sinx>x-$\frac{x^3}{6}$,x∈(0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=f′(x)的單調(diào)減區(qū)間為( 。
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,兩個以O(shè)為圓心的同心圓,AB切大圓于B,AC切小圓于C,交大圓于D,E,AB=12,AO=15,AD=8,求兩圓的半徑.

查看答案和解析>>

同步練習冊答案