12.設(shè)f(x)=x3+bx2+cx+d,又k是一個(gè)常數(shù),已知當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根;當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,現(xiàn)給出下列命題:
①f(x)-4=0和f′(x)=0有一個(gè)相同的實(shí)根    
②f(x)=0和f′(x)=0有一個(gè)相同的實(shí)根
③f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根 
④f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯(cuò)誤的命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

分析 由已知中f(x)=x3+bx2+cx+d,當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根;當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,故函數(shù)即為極大值,又有極小值,且極大值為4,極小值為0,分析出函數(shù)簡(jiǎn)單的圖象和性質(zhì)后,逐一分析四個(gè)結(jié)論的正誤,即可得到答案.

解答 解:∵f(x)=x3+bx2+cx+d,
當(dāng)k<0或k>4時(shí),f(x)-k=0只有一個(gè)實(shí)根;
當(dāng)0<k<4時(shí),f(x)-k=0有三個(gè)相異實(shí)根,
故函數(shù)即為極大值,又有極小值,且極大值為4,極小值為0
故f(x)-4=0與f'(x)=0有一個(gè)相同的實(shí)根,即極大值點(diǎn),故(1)正確;
f(x)=0與f'(x)=0有一個(gè)相同的實(shí)根,即極小值點(diǎn),故(2)正確;
f(x)+3=0有一實(shí)根小于函數(shù)最小的零點(diǎn),f(x)-1=0有三個(gè)實(shí)根均大于函數(shù)最小的零點(diǎn),故(3)錯(cuò)誤;
f(x)+3=0有一實(shí)根小于函數(shù)最小的零點(diǎn),f(x)-2=0有三個(gè)實(shí)根均大于函數(shù)最小的零點(diǎn),故(4)錯(cuò)誤;
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,其中根據(jù)已知條件,判斷出函數(shù)f(x)=x3+bx2+cx+d的圖象和性質(zhì)是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=kex-x2,(其中k∈R,e是自然對(duì)數(shù)的底數(shù)),
(Ⅰ)若k=2,當(dāng)x∈(0,+∞)時(shí),試比較f(x)與2的大;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,
(i)求k的取值范圍;
(ii)證明0<f(x1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα+1}\end{array}\right.$(α為參數(shù),t>0),曲線C2:$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}s+1}\\{y=\frac{\sqrt{2}}{2}s-1}\end{array}\right.$(s為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C3:ρcosθ-ρsinθ=2,記曲線C2與C3的交點(diǎn)為P.
(Ⅰ)求點(diǎn)P的直角坐標(biāo);
(Ⅱ)當(dāng)曲線C1與C3有且只有一個(gè)公共點(diǎn)時(shí),C1與C2相交于A、B兩點(diǎn),求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在AB為直徑的半圓O上取一點(diǎn)C,連接AC并延長(zhǎng)與過(guò)B點(diǎn)的切線相交于點(diǎn)D,以C為切點(diǎn)作切線交AB的延長(zhǎng)線于G,交BD于F.
(1)求證:DF=BF;
(2)若AC=CG,求$\frac{AG}{CG}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,△ABC內(nèi)接于⊙O,AD是⊙O的切線,切點(diǎn)為A,∠DAC的平分線交⊙O于E,且滿(mǎn)足AB⊥AE.
(I)證明:∠BAC=∠BCA;
(Ⅱ)設(shè)⊙O的半徑為1,AC=$\sqrt{3}$,CE的延長(zhǎng)線交AD于點(diǎn)F,求△AFC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知直線PA與半圓O切于點(diǎn)A,PO交半圓于B,C兩點(diǎn),AD⊥PO于點(diǎn)D.
(Ⅰ)求證:∠PAB=∠BAD;
(Ⅱ)求證:PB•CD=PC•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\frac{1}{3}$x3+x2+ax在x∈R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知圓內(nèi)接四邊形ABCD中,AB=BC=3,CD=4,DA=8,則該圓的半徑為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)x∈R都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有5個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,$\root{3}{12}$)C.(1,$\root{3}{4}$)D.(2,$\root{3}{10}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案