【題目】已知函數(shù)f(x)ln.

(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;

(2)對于x[26],f(x)lnln恒成立,求實數(shù)m的取值范圍.

【答案】(1) (,-1)(1,+∞),奇函數(shù).(2) 0m7.

【解析】

(1)解不等式0,即得函數(shù)的定義域.再利用奇偶函數(shù)的判定方法判斷函數(shù)的奇偶性.2)轉化成以0m(x1)(7x)x[26]上恒成立.再求出函數(shù)的最小值得解.

(1)0,解得x<-1x1,

所以函數(shù)f(x)的定義域為(,-1)(1,+∞),

x(,-1)(1,+∞)時,

f(x)lnlnln=-ln=-f(x),

所以f(x)ln是奇函數(shù).

(2)由于x[2,6]時,

f(x)lnln恒成立,

所以0,

因為x[26],所以0m(x1)(7x)x[2,6]上恒成立.

g(x)(x1)(7x)=-(x3)216x[2,6],

由二次函數(shù)的性質可知,x[23]時函數(shù)g(x)單調遞增,x[3,6]時函數(shù)g(x)單調遞減,

x[2,6]時,g(x)ming(6)7,

所以0m7.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】,命題p:函數(shù)內單調遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯(lián)表如下:

非“動物保護關注者”

是“動物保護關注者”

合計

10

45

55

15

30

45

合計

25

75

100

1)請判斷能否在犯錯誤的概率不超過005的前提下認為“動物保護關注者”與性別有關?

2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女動物保護達人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調查.

(1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調查結果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有99.5%的把握認為選擇科目與性別有關?

說明你的理由;

(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,平面平面,相交于點.

1)求證:;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1)求橢圓的方程;

2)如圖,過定點的直線交橢圓于不同的兩點,連接并延長交橢圓于點,設直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性.

(2)試問是否存在,使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的長軸和短軸為對角線的四邊形的面積為.

1)求橢圓的方程;

2)若直線與橢圓相交于,兩點,設為橢圓上一動點,且滿足為坐標原點).時,求的最大值.

查看答案和解析>>

同步練習冊答案