【題目】已知橢圓的離心率為,以橢圓的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為.

1)求橢圓的方程;

2)若直線與橢圓相交于,兩點(diǎn),設(shè)為橢圓上一動(dòng)點(diǎn),且滿足為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最大值.

【答案】1;(2 .

【解析】

1)根據(jù)所給離心率及四邊形面積,結(jié)合橢圓中,解方程組即可確定的值,進(jìn)而得橢圓的方程;

2)設(shè),將直線方程與橢圓方程聯(lián)立,由判別式可確定的范圍;由韋達(dá)定理可表示出,將代入直線方程可表示出.由平面向量的坐標(biāo)運(yùn)算,表示出點(diǎn)的坐標(biāo),代入橢圓方程即可建立的關(guān)系式,由進(jìn)一步確定的取值范圍即可.

1)橢圓的離心率為,則,

以橢圓的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為,則,

再有,

聯(lián)立上述等式可得,解得,

所以橢圓的標(biāo)準(zhǔn)方程為.

2)直線與橢圓相交于兩點(diǎn),設(shè)

則聯(lián)立直線與橢圓方程,化簡(jiǎn)可得

,

可知,

解得;

所以,

因?yàn)?/span>,

所以 ,代入可得

因?yàn)辄c(diǎn)P在橢圓上,

代入可得,化簡(jiǎn)可得

因?yàn)?/span>,

所以,化簡(jiǎn)可得,

所以,即,

又因?yàn)?/span>

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)ln.

(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;

(2)對(duì)于x[26],f(x)lnln恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地級(jí)市共有中小學(xué)生,其中有學(xué)生在年享受了國(guó)家精準(zhǔn)扶貧政策,在享受國(guó)家精準(zhǔn)扶貧政策的學(xué)生中困難程度分為三個(gè)等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立專項(xiàng)教育基金,對(duì)這三個(gè)等次的困難學(xué)生每年每人分別補(bǔ)助元、元、元,經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會(huì)脫貧,脫貧后將不再享受精準(zhǔn)扶貧政策,很困難的學(xué)生中有轉(zhuǎn)為一般困難,特別困難的學(xué)生中有轉(zhuǎn)為很困難.現(xiàn)統(tǒng)計(jì)了該地級(jí)市年到年共年的人均可支配年收入,對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計(jì)量的值,其中年份時(shí)代表年,(萬元)近似滿足關(guān)系式,其中為常數(shù).(年至年該市中學(xué)生人數(shù)大致保持不變)

其中,

1)估計(jì)該市年人均可支配年收入;

2)求該市年的專項(xiàng)教育基金的財(cái)政預(yù)算大約為多少?

附:對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績(jī),分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足個(gè)小時(shí),組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí),學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達(dá)標(biāo)

未達(dá)標(biāo)

總計(jì)

總計(jì)

2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).

參考公式與臨界值表:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

(1)若,試問是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由;

(2)在(1)的條件下,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題,;命題關(guān)于的方程有兩個(gè)相異實(shí)數(shù)根.

1)若為真命題,求實(shí)數(shù)的取值范圍;

2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分已知在四棱錐底面是矩形,,平面,分別是線段,的中點(diǎn).

1判斷并說明上是否存在點(diǎn),使得平面?若存在,求出的值;若不

存在,請(qǐng)說明理由;

2與平面所成的角為,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交大設(shè)計(jì)學(xué)院植物園準(zhǔn)備用一塊邊長(zhǎng)為4百米的等邊ΔABC田地(如圖)建立芳香植物生長(zhǎng)區(qū)、植物精油提煉處與植物精油體驗(yàn)點(diǎn).田地內(nèi)擬建筆直小路MN、AP,其中MN分別為AC、BC的中點(diǎn),點(diǎn)PCN上.規(guī)劃在小路MNAP的交點(diǎn)O(OMN不重合)處設(shè)立植物精油體驗(yàn)點(diǎn),圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長(zhǎng)區(qū),A、N為出入口(小路寬度不計(jì)).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費(fèi)用忽略不計(jì),為車輛安全出入,小路AO段的建造費(fèi)用為每百米4萬元,小路ON段的建造費(fèi)用為每百米3萬元.

(1)若擬建的小路AO段長(zhǎng)為百米,求小路ON段的建造費(fèi)用;

(2)設(shè)∠BAP=,求的值,使得小路AO段與ON段的建造總費(fèi)用最小,并求岀最小建造總費(fèi)用(精確到元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

1)求橢圓的方程;

2)圓的切線與橢圓相交于、兩點(diǎn),證明:為鈍角.

查看答案和解析>>

同步練習(xí)冊(cè)答案