【題目】《張丘建算經》是公元5世紀中國古代內容豐富的數學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
科目:高中數學 來源: 題型:
【題目】某居民小區(qū)內建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內鋪設三條小路OE,EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且,如圖所示.
(Ⅰ)設,試將的周長l表示成的函數關系式,并求出此函數的定義域;
(Ⅱ)經核算,三條路每米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.
(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;
(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義域為R的奇函數,當x<0時,.
(1)求f(2)的值;
(2)用定義法判斷y=f(x)在區(qū)間(-∞,0)上的單調性.
(3)求的解析式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數定義域為,若對于任意的,都有,且時,有.
(1)判斷并證明函數的奇偶性;
(2)判斷并證明函數的單調性;
(3)設,若,對所有,恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,函數g(x)=b﹣f(2﹣x),其中b∈R,若函數y=f(x)﹣g(x)恰有4個零點,則b的取值范圍是( )
A.( ,+∞)
B.(﹣∞, )
C.(0, )
D.( ,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ax﹣lnx,a∈R.
(1)若函數f(x)在[1,2]上是減函數,求實數a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實數a,當x∈(0,e](e是自然常數)時,函數g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com