【題目】已知函數(shù),
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求在區(qū)間上零點個數(shù).
【答案】(Ⅰ)(Ⅱ)見解析
【解析】試題分析:(Ⅰ) ,由 可得切線斜率,由可得切點坐標(biāo),由點斜式可得切線方程;(Ⅱ)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得在上遞增,在遞減,結(jié)合零點存在定理可得在區(qū)間上零點個數(shù).
試題解析:(Ⅰ) ,因為 , ,
所以曲線在點處的切線方程為.
(Ⅱ)當(dāng)時, ,則
當(dāng)時, ,則
,
在區(qū)間上恰有2個零點.
【方法點晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與零點,屬于中檔題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點 出的切線斜率(當(dāng)曲線在處的切線與軸平行時,在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)令bn=lna3n+1 , n=1,2,…,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com