分析 可以通過角的范圍[$\frac{3π}{4}$,π],得到(ωx+$\frac{π}{4}$)的取值范圍,直接推導ω的范圍即可.
解答 解:由于x∈[$\frac{3}{4}$π,π],
故(ωx+$\frac{π}{4}$)∈[$\frac{3π}{4}$ω+$\frac{π}{4}$,πω+$\frac{π}{4}$],
∵函數f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在[$\frac{3π}{4}$,π]上是增函數,
∴$\left\{\begin{array}{l}{\frac{3π}{4}ω+\frac{π}{4}≥-\frac{π}{2}}\\{πω+\frac{π}{4}≤\frac{π}{2}}\\{ω>0}\end{array}\right.$,
∴0<ω≤$\frac{3}{4}$,
故答案為:(0,$\frac{3}{4}$].
點評 本題考查三角函數的單調性的應用,函數的解析式的求法,考查計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-$\frac{2π}{3}$,0) | B. | (-$\frac{π}{3}$,0) | C. | ($\frac{2π}{3}$,0) | D. | ($\frac{5π}{3}$,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com