分別為橢圓的左、右頂點,若在橢圓上存在異于的點,使得,其中為坐標原點,則橢圓的離心率的取值范圍是
A.B.C.D.
A
設點P(x,y),由,,
消y得,顯然x=a是方程的一個根,由韋達定理,另一根滿足,得,即為P橫坐標.由0<x<a,得,所以.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分13分)
以橢圓的中心為圓心,為半徑的圓稱為該橢圓的“準圓”.設橢圓的左頂點為,左焦點為,上頂點為,且滿足,.
(Ⅰ)求橢圓及其“準圓”的方程;
(Ⅱ)若橢圓的“準圓”的一條弦(不與坐標軸垂直)與橢圓交于、兩點,試證明:當時,試問弦的長是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,點A,B分別是橢圓的長軸的左右端點,點F為橢圓的右焦點,直線PF的方程為:.

(1)求直線AP的方程;
(2)設點M是橢圓長軸AB上一點,點M到直線AP的距離等于,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點是橢圓上的在第一象限內的點,又、,是原點,則四邊形的面積的最大值是           。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過橢圓的左焦點軸的垂線交橢圓于點,為右焦點,若,則橢圓的離心率為__________________ .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過點作拋物線 的切線,切點A在第二象限.

(1)求切點A的縱坐標;
(2)若離心率為的橢圓恰好經過切點A,設切線交橢圓的另一點為B,記切線,OA,OB的斜率分別為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知過點的直線與橢圓交于不同的兩點,點是弦的中點.
(Ⅰ)若,求點的軌跡方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓,過中心O作互相垂直的線段OA、OB與橢圓交于A、B, 求:
(1)的值
(2)判定直線AB與圓的位置關系
(文科)(3)求面積的最小值
(理科)(3)求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的左、右焦點分別為,線段被拋物線的焦點F分成5:3兩段,則橢圓的離心率為 (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案