解答:解:(1)若x
2-4x+3≥0即x≥3或x≤1時(shí),f(x)=|x
2-4x+3|=x
2-4x+3=(x-2)
2-1,
此時(shí)當(dāng)x≥3時(shí),函數(shù)f(x)單調(diào)遞增,
當(dāng)x≤1時(shí),函數(shù)f(x)單調(diào)遞減.
若x
2-4x+3<0即1<x<3時(shí),f(x)=|x
2-4x+3|=-(x
2-4x+3)=-(x-2)
2+1,
此時(shí)當(dāng)1<x≤2時(shí),函數(shù)f(x)單調(diào)遞增,
當(dāng)2≤x<3時(shí),函數(shù)f(x)單調(diào)遞減.
即函數(shù)的單調(diào)遞增區(qū)間為:[3,+∞)和(1,2].
函數(shù)的單調(diào)遞減區(qū)間為:(-∞,1]和[2,3).
(2)由圖象可知當(dāng)m>1時(shí),方程f(x)=m有2個(gè)根,
當(dāng)m=1時(shí),方程f(x)=m有3個(gè)根,
當(dāng)m=0時(shí),方程f(x)=m有2個(gè)根,
當(dāng)0<m<1時(shí),方程f(x)=m有4個(gè)根,
當(dāng)m<0時(shí),方程f(x)=m沒(méi)有根.
故M={m|方程f(x)=m有四個(gè)不等的實(shí)根}={m|0<m<1}.