16.已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方
(1)求圓C的方程;
(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

分析 (1)設(shè)出圓心C坐標(biāo),根據(jù)直線l與圓C相切,得到圓心到直線l的距離d=r,確定出圓心C坐標(biāo),即可得出圓C方程;
(2)當(dāng)直線AB⊥x軸,則x軸平分∠ANB,當(dāng)直線AB斜率存在時(shí),設(shè)直線AB方程為y=k(x-1),聯(lián)立圓與直線方程,消去y得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示出兩根之和與兩根之積,由若x軸平分∠ANB,則kAN=-kBN,求出t的值,確定出此時(shí)N坐標(biāo)即可.

解答 解:(1)設(shè)圓心C(a,0)(a>-$\frac{5}{2}$),
∵直線l:4x+3y+10=0,半徑為2的圓C與l相切,
∴d=r,即 $\frac{|4a+10|}{5}$=2,
解得:a=0或a=-5(舍去),
則圓C方程為x2+y2=4;
(2)當(dāng)直線AB⊥x軸,則x軸平分∠ANB,
若x軸平分∠ANB,則kAN=-kBN,即$\frac{k({x}_{1}-1)}{{x}_{1}-t}$+$\frac{k({x}_{2}-1)}{{x}_{2}-t}$=0,
整理得:2x1x2-(t+1)(x1+x2)+2t=0,即$\frac{2({k}^{2}-4)}{{k}^{2}+1}-\frac{2{k}^{2}(t+1)}{{k}^{2}+1}$+2t=0,
解得:t=4,
當(dāng)點(diǎn)N(4,0),能使得∠ANM=∠BNM總成立.

點(diǎn)評 此題考查了直線與圓的方程的應(yīng)用,涉及的知識有:垂徑定理,勾股定理,圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,以及斜率的計(jì)算,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知在等腰梯形ABCD中,AB∥DC,AB=BC=2,∠ABC=120°,E為BC的中點(diǎn),則$\overrightarrow{AC}$•$\overrightarrow{DE}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,若a,b,c分別是角A,B,C所對的邊,a2+b2-c2+ab=0,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,已知⊙O的直徑AB=4,點(diǎn)C、D為⊙O上兩點(diǎn),且∠CAB=45°,∠DAB=60°,F(xiàn)為弧BC的中點(diǎn)、將⊙O沿直徑AB折起成兩個(gè)半平面(如圖2).
(1)求證:OF∥平面ACD;
(2)(文) 當(dāng)折起的兩個(gè)半平面垂直時(shí),在AD上是否存在點(diǎn)E,使得平面OCE⊥平面ACD?若存在,試指出點(diǎn)E的位置;若不存在,請說明理由.
(3)(理) 當(dāng)三棱錐C-ADO體積最大時(shí),求二面角C-AD-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,M、N分別是棱AA1、AD的中點(diǎn),設(shè)E是棱AB的中點(diǎn).
(1)求證:MN∥平面CEC1;(2)求平面D1EC1與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-kx+1.
(1)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(2)證明:ln($\frac{5}{4}$)+ln($\frac{10}{9}$)+ln($\frac{17}{16}$)+…+ln($\frac{{{n^2}+1}}{n^2}$)<1(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,且AC=BC=2,PA⊥平面ABCD,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若H為PD上一點(diǎn),且AH⊥PD,EH與平面PAD所成角的正切值為$\frac{{\sqrt{15}}}{4}$,求二面角E-AF-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.半徑為R的球O中有兩個(gè)半徑分別為2$\sqrt{3}$與2$\sqrt{2}$的截面圓,它們所在的平面互相垂直,且兩圓的公共弦長為R,則R=( 。
A.4$\sqrt{3}$B.5C.3$\sqrt{3}$D.4

查看答案和解析>>

同步練習(xí)冊答案