已知點
是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
、
(
,
都在
軸上方),且
.
(1)求橢圓
的方程;
(2)當
為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線
,是否存在一個定點,無論
如何變化,直線
總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
試題分析:(1)本題橢圓方程的求法是軌跡法.這是由于題目沒有明確直線
是左準線,點
是左焦點.不可利用待定系數(shù)法求解. 設
,則
,
,化簡得:
橢圓C的方程為:
,(2)條件中角的關系一般化為斜率,利用坐標進行求解. 因為
,所以
,由題意得
,
,可求與橢圓交點
,從而可得直線
方程
(3)直線過定點問題,一般先表示出直線,
,利用等量關系將兩元消為一元.
,代入
得:
,
.化簡得
,直線
方程:
直線
總經(jīng)過定點
解:(1)設
,則
, (2分)
化簡得:
橢圓C的方程為:
(4分)
(2)
,
,
(3分)
代入
得:
,
,代入
得
,
(5分)
, (6分)
(3)解法一:由于
,
。 (1分)
設
設直線
方程:
,代入
得:
(3分)
, (5分)
直線
方程:
直線
總經(jīng)過定點
(6分)
解法二:由于
,所以
關于x軸的對稱點
在直線
上。
設
設直線
方程:
,代入
得:
,
,令
,得:
,
直線
總經(jīng)過定點
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
經(jīng)過點
.
(1)求橢圓
的方程及其離心率;
(2)過橢圓右焦點
的直線(不經(jīng)過點
)與橢圓交于
兩點,當
的平分線為
時,求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
+
=1(a>b>0)的兩頂點為A(a,0),B(0,b),且左焦點為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的焦點坐標為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,已知橢圓
∶
的左、右焦點分別
、
焦距為
,且與雙曲線
共頂點.
為橢圓
上一點,直線
交橢圓
于另一點
.
(1)求橢圓
的方程;
(2)若點
的坐標為
,求過
、
、
三點的圓的方程;
(3)若
,且
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,
、
是橢圓的左右焦點,且橢圓經(jīng)過點
.
(1)求該橢圓方程;
(2)過點
且傾斜角等于
的直線
,交橢圓于
、
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
過點
作傾斜角為
的直線
與曲線C
交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知圓E
,點
,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡
的方程;
(2)點
,
,點G是軌跡
上的一個動點,直線AG與直線
相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的左、右焦點為
,過
作直線
交C于A,B兩點,若
是等腰直角三角形,且
,則橢圓C的離心率為( )
查看答案和解析>>