橢圓=1(a>b>0)的兩頂點為A(a,0),B(0,b),且左焦點為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為(  )
A.B.C.D.
B
由題可知△ABF為直角三角形,其中|AB|=,|BF|=a,|AF|=a+c,由勾股定理,|AF|2=|AB|2+|BF|2即(a+c)2=a2+b2+a2=2a2+a2-c2,整理得c2+ac-a2=0,同除a2得e2+e-1=0,∴e=,∵e∈(0,1),∴e=
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點M(,0),橢圓+y2=1與直線y=k(x+)交于點A、B,則△ABM的周長為(  )
A.4      B.8     C.12     D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓=1與雙曲線=1(m,n,p,q均為正數(shù))有共同的焦點F1,F(xiàn)2,P是兩曲線的一個公共點,則·=(  )
A.p2-m2B.p-mC.m-pD.m2-p2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓E:=1(a>b>0)的上焦點是F1,過點P(3,4)和F1作直線PF1交橢圓于A,B兩點,已知A().
(1)求橢圓E的方程;
(2)設(shè)點C是橢圓E上到直線PF1距離最遠的點,求C點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C:=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是(  )
A.[1,4)B.[1,+∞)
C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線過點P且離心率為.
(1)求的方程;
(2)橢圓過點P且與有相同的焦點,直線的右焦點且與交于A,B兩點,若以線段AB為直徑的圓心過點P,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(,都在軸上方),且
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,過的直線交橢圓于兩點,,
(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案