正三棱柱ABC-A1B1C1中,過AB作一截面交C1C于D,截面與底面ABC成60°的二面角.已知棱柱的底面邊長為a,則所作截面ABD的面積為________.


分析:根據(jù)題意,△ABC為截面ABD在平面中的射影,由于截面與底面ABC成60°的二面角,根據(jù),可求截面ABD的面積
解答:根據(jù)題意,△ABC為截面ABD在平面中的射影
∵截面與底面ABC成60°的二面角

∵棱柱的底面邊長為a
∴截面ABD的面積為
故答案為
點評:本題以正三棱柱為載體,考查二面角,考查截面面積,關鍵是利用公式求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在 正三棱柱ABC-A1 B1 C1中,底面邊長為
2

(1)設側棱長為1,求證A B1⊥B C1;
(2)設A B1與B C1成600角,求側棱長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱柱ABC-A1 B1 C1中,AA1=4,AB=2,M是AC的中點,點N在AA1上,AN=
1
4

(1)求BC1與側面AC C1 A1所成角的正弦值;
(2)證明:MN⊥B C1;
(3)求二面角C-C1B-M的平面角的正弦值,若在△A1B1C1中,
C1E
=
1
3
EA1
C1F
=
1
4
FB1
,
C1H
=x
C1A1
+y
C1B1
,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB=數(shù)學公式=a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:1996年全國統(tǒng)一高考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

同步練習冊答案