【題目】據(jù)統(tǒng)計(jì),目前微信用戶已達(dá)10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進(jìn)入微商渠道,讓這個(gè)行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會(huì)在山東濟(jì)南舜耕國際會(huì)展中心召開,力爭(zhēng)為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級(jí),某品牌飲料公司對(duì)微商銷售情況進(jìn)行中期調(diào)研,從某地區(qū)隨機(jī)抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪調(diào)查活動(dòng),求恰有1家是優(yōu)秀微商的概率.

【答案】(1) 推斷該地區(qū)110家微商中有55家優(yōu)秀;(2)

【解析】試題分析

(1)由題意得到銷售金額的平均數(shù),再判斷優(yōu)秀微商的數(shù)目,最后估計(jì)該地區(qū)110家微商中的優(yōu)秀微商的數(shù)目。(2)根據(jù)古典概型概率公式計(jì)算即可。

試題解析

(1)6家微商一周的銷售金額分別為8,14,17,23,26,35,

故銷售金額的平均值為

由題意知優(yōu)秀微商有3家,故優(yōu)秀的概率為,

由此可推斷該地區(qū)110家微商中有55家優(yōu)秀。

(2)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪調(diào)查活動(dòng),有種,

設(shè)“恰有1家是優(yōu)秀微商”為事件A,則事件A包含的基本事件個(gè)數(shù)為種,

所以.

即恰有1家是優(yōu)秀微商的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).

(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1B1;
(3)求CP與平面BDD1B1所成的角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n﹣m的最小值為 , 則實(shí)數(shù)a的值為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,過坐標(biāo)原點(diǎn)O作兩條互相垂直的射線,與橢圓C交于A,B兩點(diǎn).設(shè)A(x1 , y1),B(x2 , y2),直線AB的方程為y=﹣2x+m(m>0),試求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4一5:不等式選講.

已知函數(shù).

(1)求的解集;

(2)設(shè)函數(shù),若對(duì)任意的都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)點(diǎn)A(2,1)、B(3,2)、D(﹣1,4).
(1)求證: ;
(2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線所夾銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}前n項(xiàng)和
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)(x,y)在雙曲線 ﹣y2=1上,則3x2﹣2xy的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案