3.如圖,在網(wǎng)格中粗線顯示的為某幾何體的三視圖(正方形網(wǎng)格的邊長(zhǎng)為1),則該幾何體的體積為( 。
A.5B.6C.6.5D.7

分析 由三視圖可知,直觀圖是棱長(zhǎng)為2的正方體,剪去一個(gè)底面是圖形,高為1的四棱柱,即可求出幾何體的體積.

解答 解:由三視圖可知,直觀圖是棱長(zhǎng)為2的正方體,剪去一個(gè)底面是圖形,高為1的四棱柱,
所以幾何體的體積為${2}^{3}-\frac{(1+2)×2}{2}×1$=5,
故選A.

點(diǎn)評(píng) 本題考查三視圖,考查幾何體體積的計(jì)算,確定直觀圖的形狀是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點(diǎn)A(2,0)到直線l:y=x+2的距離為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平行六面體ABCD-A1B1C1D1中,AB=1,AD=1,AA1=2,∠BAD=90°,∠BAA1=∠DAA1=60°,則AC1的長(zhǎng)為( 。
A.$\sqrt{13}$B.$\sqrt{5}$C.$\sqrt{10}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)D表示不等式組$\left\{\begin{array}{l}{x≤1}&{\;}\\{y≤x}&{\;}\\{x+y≥1}&{\;}\end{array}\right.$所確定的平面區(qū)域,在D內(nèi)存在無數(shù)個(gè)點(diǎn)落在y=a(x+2)上,則a的取值范圍是( 。
A.RB.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(-∞,0]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},集合B=Z,則A∩B=(  )
A.{1}B.[0,2]C.(0,2)D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),若x1+x2=7,則|AB|的值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,已知角A的正切值為函數(shù)y=lnx-$\frac{2}{x}$在x=1處切線的斜率,且a=$\sqrt{10}$,b=2,則sinB=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:“?x0∈R,x02-2x0+3≤0”的否定是“?x∈R,x2-2x+3>0”,命題q:橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{16}$=1的一個(gè)焦點(diǎn)坐標(biāo)為(3,0),則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.¬p∨qD.p∨q

查看答案和解析>>

同步練習(xí)冊(cè)答案