定義:關(guān)于x的兩個(gè)不等式f(x)<0和g(x)<0的解集分別為(a,b)和數(shù)學(xué)公式,則稱(chēng)這兩個(gè)不等式為對(duì)偶不等式.如果不等式數(shù)學(xué)公式與不等式2xh2+4xsin2θ+1<0為對(duì)偶不等式,且θ∈(0,π),則θ=________.


分析:先設(shè)出不等式 的對(duì)應(yīng)方程兩個(gè)根為a、b,推出不等式 的對(duì)應(yīng)方程兩個(gè)根為a、b,利用韋達(dá)定理,求得關(guān)于θ的三角方程,根據(jù)θ的范圍求解即可.
解答:不等式 與不等式2x2+4xsin2θ+1<0為對(duì)偶不等式,
設(shè)不等式 的對(duì)應(yīng)方程兩個(gè)根為a、b,
則不等式2x2+4xsin2θ+1<0對(duì)應(yīng)方程兩個(gè)根為:
所以
即:tan2θ=-因?yàn)?θ∈(0,π),所以 θ=
故答案為:
點(diǎn)評(píng):本題是新定義的創(chuàng)新題,考查邏輯思維能力,考查韋達(dá)定理等有關(guān)知識(shí),是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個(gè)“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱(chēng)以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿(mǎn)足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱(chēng)以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的不動(dòng)點(diǎn),求a,b應(yīng)滿(mǎn)足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時(shí)M點(diǎn)的坐標(biāo);
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)的有奇數(shù)個(gè)”是否正確?若正確,給出證明,并舉一例;若不正確,請(qǐng)舉一反例說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?
(3)如圖:直線l與兩個(gè)“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-2|2|x|-1|+1和g(x)=x2-2|x|+m(m∈R)是定義在R上的兩個(gè)函數(shù),則下列命題正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案