【題目】在平面直角坐標系中,圓,以坐標原點為極點,軸正半軸為極軸,直線的極坐標方程為,直線交圓兩點,中點.

1)求點軌跡的極坐標方程;

2)若,求的值.

【答案】(1) ,(2)

【解析】

(1)聯(lián)立極坐標方程,利用中點與韋達定理分析求解即可.

(2)根據(jù)極經(jīng)的幾何意義分別表示,再利用韋達定理求關(guān)于的方程求解即可.

解法一:(1)圓的極坐標方程為

代入得:

,

成立,

設(shè)點對應的極徑分別為,

所以,

所以,

所以點軌跡的極坐標方程為

2)由(1)得,

,

所以,,

,所以

解法二:

1)因為中點,

所以

的軌跡是以為直徑的圓(在的內(nèi)部),

其所在圓方程為:,

.

從而點軌跡的極坐標方程為,

2)由(1)得,

,

,因為,所以,

所以,所以

,解得舍去),

所以,

,,

所以,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),函數(shù)

(1)若,求出函數(shù)在區(qū)間上的最大值.

(2)若,求出函數(shù)的單調(diào)區(qū)間(不必證明)

(3)若存在,使得關(guān)于方程有三個不相等的實數(shù)根,求出實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過點,且圓心在直線上,又直線與圓C交于P,Q兩點.

1)求圓C的方程;

2)若,求實數(shù)的值;

(3)過點作直線,且交圓CM,N兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,四邊形為正方形,為等邊三角形,中點,平面與棱交于點.

Ⅰ)求證:;

Ⅱ)求證:平面;

(III)記四棱錐的體積為,四棱錐的體積為,直接寫出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

2)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內(nèi)的概率.

3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:

A:所有芒果以10/千克收購;

B:對質(zhì)量低于250克的芒果以2/個收購,高于或等于250克的以3/個收購,通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著科學技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費者認可.某網(wǎng)購公司統(tǒng)計了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中x=1”表示2015年,x=2”表示2016年,依次類推;y表示人數(shù))

x

1

2

3

4

5

y(萬人)

20

50

100

150

180

1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;

2)該公司為了吸引網(wǎng)購者,特別推出玩網(wǎng)絡(luò)游戲,送免費購物券活動,網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進. 若遙控車最終停在勝利大本營,則網(wǎng)購者可獲得免費購物券500元;若遙控車最終停在失敗大本營,則網(wǎng)購者可獲得免費購物券200. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標有第0格、第1格、第2格、、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從)若擲出偶數(shù)遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費購物券金額的期望值.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著通識教育理念的推廣及高校課程改革的深入,選修課越來越受到人們的重視.國內(nèi)一些知名院校在公共選修課的設(shè)置方面做了許多有益的探索,并且取得了一定的成果.因為選修課的課程建設(shè)處于探索階段,選修課的教學、管理還存在很多的問題,所以需要在通識教育的基礎(chǔ)上制定科學的、可行的解決方案,為學校選修課程的改革與創(chuàng)新、課程設(shè)置、考試考核、人才培養(yǎng)提供參考.某高校采用分層抽樣法抽取了數(shù)學專業(yè)的50名參加選修課與不參加選修課的學生的成績,統(tǒng)計數(shù)據(jù)如下表:

成績優(yōu)秀

成績不夠優(yōu)秀

總計

參加選修課

16

9

25

不參加選修課

8

17

25

總計

24

26

50

1)試運用獨立性檢驗的思想方法你能否有99%的把握認為學生的成績優(yōu)秀與是否參加選修課有關(guān),并說明理由;

2)如果從數(shù)學專業(yè)隨機抽取5名學生,求抽到參加選修課的學生人數(shù)的分布列和數(shù)學期望(將頻率當做概率計算).

參考公式:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù), ).

(1)當時,若函數(shù)的圖象在處有相同的切線,求的值;

(2)當時,若對任意和任意,總存在不相等的正實數(shù),使得,求的最小值;

(3)當時,設(shè)函數(shù)的圖象交于 兩點.求證: .

查看答案和解析>>

同步練習冊答案