如圖,在長(zhǎng)方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角A-B1E-A1的大小為30°,求AB的長(zhǎng).

【答案】分析:(Ⅰ)由題意及所給的圖形,可以A為原點(diǎn),,的方向?yàn)閄軸,Y軸,Z軸的正方向建立空間直角坐標(biāo)系,設(shè)AB=a,給出圖形中各點(diǎn)的坐標(biāo),可求出向量的坐標(biāo),驗(yàn)證其數(shù)量積為0即可證出兩線段垂直.
(II)由題意,可先假設(shè)在棱AA1上存在一點(diǎn)P(0,0,t),使得DP∥平面B1AE,求出平面B1AE法向量,可法向量與直線DP的方向向量?jī)?nèi)積為0,由此方程解出t的值,若能解出,則說(shuō)明存在,若不存在符合條件的t的值,說(shuō)明不存在這樣的點(diǎn)P滿足題意.
(III)由題設(shè)條件,可求面夾二面角的兩個(gè)平面的法向量,利用兩平面的夾角為30°建立關(guān)于a的方程,解出a的值即可得出AB的長(zhǎng)
解答:解:(I)以A為原點(diǎn),,的方向?yàn)閄軸,Y軸,Z軸的正方向建立空間直角坐標(biāo)系,如圖,
設(shè)AB=a,則A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1)
=(0,1,1),=(-,1,-1),=(a,0,1),=(,1,0),
=1-1=0
∴B1E⊥AD1
(II)假設(shè)在棱AA1上存在一點(diǎn)P(0,0,t),使得DP∥平面B1AE.此時(shí)=(0,-1,t).
又設(shè)平面B1AE的法向量=(x,y,z).
⊥平面B1AE,∴⊥B1A,⊥AE,得,取x=1,得平面B1AE的一個(gè)法向量=(1,-,-a).
要使DP∥平面B1AE,只要,即有=0,有此得-at=0,解得t=,即P(0,0,),
又DP?平面B1AE,
∴存在點(diǎn)P,滿足DP∥平面B1AE,此時(shí)AP=
(III)連接A1D,B1C,由長(zhǎng)方體ABCD-A1B1C1D1及AA1=AD=1,得AD1⊥A1D.
∵B1C∥A1D,∴AD1⊥B1C.
由(I)知,B1E⊥AD1,且B1C∩B1E=B1
∴AD1⊥平面DCB1A1,
∴AD1是平面B1A1E的一個(gè)法向量,此時(shí)=(0,1,1).
設(shè)所成的角為θ,則cosθ==
∵二面角A-B1E-A1的大小為30°,
∴|cosθ|=cos30°==,解得a=2,即AB的長(zhǎng)為2
點(diǎn)評(píng):本題考查利用空間向量這一工具求二面角,證明線面平行及線線垂直,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系及空間位置關(guān)系與向量的對(duì)應(yīng),此類解題,方法簡(jiǎn)單思維量小,但計(jì)算量大,易因?yàn)橛?jì)算錯(cuò)誤導(dǎo)致解題失敗,解題時(shí)要嚴(yán)謹(jǐn),認(rèn)真,利用空間向量求解立體幾何題是近幾年高考的熱點(diǎn),必考內(nèi)容,學(xué)習(xí)時(shí)要好好把握
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在長(zhǎng)方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個(gè)數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,定義八個(gè)頂點(diǎn)都在某圓柱的底面圓周上的長(zhǎng)方體叫做圓柱的內(nèi)接長(zhǎng)方體,圓柱也叫長(zhǎng)方體的外接圓柱.設(shè)長(zhǎng)方體ABCD-A1B1C1D1的長(zhǎng)、寬、高分別為a,b,c(其中a>b>c),那么該長(zhǎng)方體的外接圓柱側(cè)面積的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長(zhǎng)方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).

(1)證明:D1EA1D;

(2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

(3)AE等于何值時(shí),二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =M為側(cè)棱CC1上一點(diǎn),AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點(diǎn)C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案