【題目】港珠澳大橋于2018年10月2刻日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現對大橋某路段上1000輛汽車的行駛速度進行抽樣調查.畫出頻率分布直方圖(如圖),根據直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數和行駛速度超過90km/h的頻率分別為( 。
A. 300,B. 300,C. 60,D. 60,
科目:高中數學 來源: 題型:
【題目】某手機專賣店對某市市民進行手機認可度的調查,在已購買手機的1000名市民中,隨機抽取100名,按年齡(單位:歲)進行統計的頻數分布表和頻率分布直方圖如下:
分組(歲) | 頻數 |
5 | |
35 | |
10 | |
合計 | 100 |
(1)求頻數分布表中,的值,并補全頻率分布直方圖;
(2)在抽取的這100名市民中,從年齡在、內的市民中用分層樣的方法抽取5人參加手機宣傳活動,現從這5人中隨機選取2人各贈送一部手機,求這2人中恰有1人的年齡在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①如果平面外一條直線與平面內一條直線平行,那么;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果一條直線垂直于一個平面內的無數條直線,那么這條直線與這個平面垂直;
④若兩個相交平面都垂直于第三個平面,則這兩個平面的交線垂直于第三個平面.
其中真命題的序號為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某網絡平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數據,并將這100個數據按學時數,客戶性別等進行統計,整理得到如表:
學時數 |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據上表估計男性客戶購買該課程學時數的平均值(同一組中的數據用該組區(qū)間的中點值作代表,結果保留小數點后兩位);
(2)從這100位客戶中,對購買該課程學時數在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學時數都不低于15的概率.
(3)將購買該課程達到25學時及以上者視為“十分愛好該課程者”,25學時以下者視,為“非十分愛好該課程者”.請根據已知條件完成以下列聯表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關?
非十分愛好該課程者 | 十分愛好該課程者 | 合計 | |
男性 | |||
女性 | |||
合計 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線C關于軸對稱,頂點為坐標原點,且經過點.
(1)求拋物線C的標準方程;
(2) 過點的直線交拋物線于M、N兩點.是否存在定直線,使得l上任意點P與點M,Q,N所成直線的斜率,,成等差數列.若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數).
(1)求的解析式及單調遞減區(qū)間;
(2)是否存在常數,使得對于定義域內的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占,三星銷量約占,蘋果銷量約占),根據該圖,以下結論中一定正確的是( )
A. 四個季度中,每季度三星和蘋果總銷量之和均不低于華為的銷量
B. 蘋果第二季度的銷量小于第三季度的銷量
C. 第一季度銷量最大的為三星,銷量最小的為蘋果
D. 華為的全年銷量最大
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com