圖①是一個正方體的表面展開圖,MN和PQ是兩條面對角線,請在圖(2)的正方體中將MN,PQ畫出來,并就這個正方體解答下列各題:
(1)求MN和PQ所成角的大小;
(2)求四面體M—NPQ的體積與正方體的體積之比;
(3)求二面角M—NQ—P的大小。
(Ⅰ)60°(Ⅱ)1:6(Ⅲ)60°
(1)如圖②,作出MN、PQ

∵PQ∥NC,又△MNC為正三角形
∴∠MNC=60°
∴PQ與MN成角為60°


即四面體M—NPQ的體積與正方體的體積之比為1:6
(3)連結(jié)MA交PQ于O點(diǎn),則MO⊥PQ
又NP⊥面PAQM,∴NP⊥MO,則MO⊥面PNQ
過O作OE⊥NQ,連結(jié)ME,則ME⊥NQ
∴∠MEO為二面角M—NQ—P的平面角
在Rt△NMQ中,ME·NQ=MN·MQ
設(shè)正方體的棱長為a


∴∠MEO=60°
即二面角M—NQ—P的大小為60°。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正四棱柱ABCDA1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點(diǎn)BB1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,
(1)求證:A1C⊥平面BDE;
(2)求A1B與平面BDE所成角的正弦值。
(3)設(shè)F是CC1上的動點(diǎn)(不包括端點(diǎn)C),求證:△DBF是銳角三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點(diǎn)。
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在棱長為的正方體中,為棱的中點(diǎn).
(Ⅰ)求證:平面;   (Ⅱ)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正三棱柱ABC—A1B1C1中,各棱長都相等,D、E分別為AC1,BB1的中點(diǎn)。(1)求證:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,正方體的棱長為2,EAB的中點(diǎn).(Ⅰ)求證:(Ⅱ)求異面直線BD1CE所成角的余弦值;(Ⅲ)求點(diǎn)B到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱錐P—ABC中,△PAC是邊長為4的等邊三角形,△ABC為等腰直角三角形,∠ACB=90°,平面PAC⊥平面ABC,D、E分別為AB、PB的中點(diǎn).
(1)求證:AC⊥PD;
(2)求二面角E—AC—B的正切值;


 
(3)求三棱錐P—CDE與三棱錐P—ABC的體積之比.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖a—l—是120°的二面角,A,B兩點(diǎn)在棱上,AB=2,D在內(nèi),三角形ABD是等腰直角三角形,∠DAB=90°,C在內(nèi),ABC是等腰直角三角形∠ACB=
(I)       求三棱錐D—ABC的體積;
(2)求二面角D—AC—B的大。     
(3)求異面直線AB、CD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)當(dāng)你手握直角三角板,其斜邊保持不動,將其直角頂點(diǎn)提起一點(diǎn),則直角在平面內(nèi)的正投影是銳角、直角 還是鈍角?
(2)根據(jù)第(1)題,你能猜想某個角在一個平面內(nèi)的正投影一定大于這個角嗎?如果正確,請證明;如果錯誤,則利用下列三角形舉出反例:△ABC中,
,以∠BAC為例。

查看答案和解析>>

同步練習(xí)冊答案