在棱長為的正方體中,為棱的中點.
(Ⅰ)求證:平面;   (Ⅱ)求與平面所成角的余弦值.
(Ⅰ)證明見解析(Ⅱ)
(Ⅰ)(略證):只需證即可。     ……6分
(Ⅱ)連接,由正方體的幾何性質(zhì)可得即為在底面上的射影,則即為與平面所成角.     …… 10分
中,,

所以與平面所成角的余弦值為. …… 14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱中,ACB=90°, 的中點,的中點。
(1)求證:MN∥平面 ;
(2)求點到平面BMC的距離;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,已知平行四邊形和矩形所在的平面互相垂直,,是線段的中點.

(1)求證:;(2)求二面角的大;
(3)設(shè)點為一動點,若點出發(fā),沿棱按照
的路線運動到點,求這一過程中形成的三棱錐的體積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形ABCE中,,D是CE的中點,點M和點N在ADE繞AD向上翻折的過程中,分別以的速度,同時從點A和點B沿AE和BD各自勻速行進(jìn),t 為行進(jìn)時間,0。
(1)      求直線AE與平面CDE所成的角;
(2)      求證:MN//平面CDE。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三棱錐中,
D是AC的中點,.
(1)求證:(5分)
(2)(理科)求二面角的大小。(7分)
(文科)求二面角平面角的大小。(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,CD//AB,,EAB的中點,將△ADE沿DE折起,使點A折到點P的位置,且二面角的大小為1200
(I)求證:;
(II)求直線PD與平面BCDE所成角的大小;
(III)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,上的點.
(1)當(dāng);
(2)當(dāng)二面角的大小為的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

圖①是一個正方體的表面展開圖,MN和PQ是兩條面對角線,請在圖(2)的正方體中將MN,PQ畫出來,并就這個正方體解答下列各題:
(1)求MN和PQ所成角的大;
(2)求四面體M—NPQ的體積與正方體的體積之比;
(3)求二面角M—NQ—P的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方形ABCD邊長為2,E、F分別是ABCD的中點,將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點M到直線EF的距離為(    )
A.B.1C.D.

查看答案和解析>>

同步練習(xí)冊答案