求函數(shù)y=-x3-2x2-4x+5的單調區(qū)間.
考點:利用導數(shù)研究函數(shù)的單調性
專題:計算題,導數(shù)的綜合應用
分析:求出函數(shù)的導數(shù),求出判別式,即可判斷函數(shù)的單調性.
解答: 解:函數(shù)y=-x3-2x2-4x+5的導數(shù)為
y′=-3x2-4x-4,
由于判別式△=16-4×12<0,
則y′<0恒成立,
則函數(shù)在R上遞減,
即只有減區(qū)間為(-∞,+∞).
點評:本題考查導數(shù)的運用:求單調區(qū)間,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在(2,+∞)上是減函數(shù),求a取值范圍,使f(a2-2)-f(2-3a)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4px(p>0)上的動點M到定點A(1,0)的距離|MA|達到最小值時點M的位置記為M′,且|M′A|<1,(1)求p的取值范圍 
(2)求點M′的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P為△ABC所在平面內一點,且滿足
AP
=
1
3
AC
+
2
3
AB
,則△APB的面積與△APC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
1
5
,α∈(0,π),則
1
tanα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量中從集合A到A的映射f由f(x)=x-2(x•
a
)•
a
確定,其中
a
為常向量,若映射f滿足f(x)•f(y)=x•y,對x,y∈A恒成立,則|
a
|=( 。
A、1
B、2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只要將f(x)的圖象( 。
A、向右平移
π
6
個單位長度
B、向右平移
π
12
個單位長度
C、向左平移
π
6
個單位長度
D、向左平移
π
12
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,對稱軸為坐標軸,焦點在x軸上,有一個頂點為A(-4,0),橢圓兩準線間的距離為16.
(Ⅰ)求橢圓C的方程:
(Ⅱ)過點B(-1,0)作直線l與橢圓C交于E,F(xiàn)兩點,線段EF的中點為M,求直線MA的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為R,當x<0時,0<f(x)<1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y)
(1)求f(0); 
(2)試判斷函數(shù)f(x)在(-∞,0]上是否存在最大值,若存在,求出該最大值,若不存在說明理由;
(3)設數(shù)列{an}各項都是正數(shù),且滿足a1=f(0),f(an+12-an2)=
1
f(an+1-3an-2)
,(n∈N*),又設bn=(
1
2
 an,Sn=b1+b2+…+bn,Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試比較Sn與 Tn的大。

查看答案和解析>>

同步練習冊答案