10.設(shè)向量$\overrightarrow{m}$和$\overrightarrow{n}$的夾角為θ,且$\overrightarrow{m}$=(2,2),2$\overrightarrow{n}$-$\overrightarrow{m}$=(-4,4),則cosθ的值為( 。
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.0

分析 由向量的加減運(yùn)算可得$\overrightarrow{n}$=(-1,3),再由向量的夾角公式cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$,代入計(jì)算即可得到所求值.

解答 解:由$\overrightarrow{m}$=(2,2),2$\overrightarrow{n}$-$\overrightarrow{m}$=(-4,4),可得:
$\overrightarrow{n}$=(-1,3),
由cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2×(-1)+2×3}{\sqrt{4+4}•\sqrt{1+9}}$=$\frac{\sqrt{5}}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查向量的夾角公式的運(yùn)用,注意運(yùn)用向量的數(shù)量積的坐標(biāo)表示和向量模的公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.小明射擊一次擊中10環(huán)的概率為0.8,則小明連續(xù)射擊3次至少擊中一次10環(huán)的概率為0.992.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x,求函數(shù)f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.l1的傾斜角為60°,l2經(jīng)過點(diǎn)M(1,$\sqrt{3}$),N(-2,-2$\sqrt{3}$),則l1與l2的關(guān)系是平行或重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=log2(x2-ax+1)的值域?yàn)镽,則a的取值范圍為(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)f′(x)滿足f′(x)>f(x),則不等式$\frac{f(x)}{e^x}>\frac{f(1)}{e}$的解集是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的函數(shù)f(x)=$\frac{2t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+x}{2{x}^{2}+cosx}$(t≠0)的最大值為a,最小值為b,且a+b=2016,則實(shí)數(shù)t的值為1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|3<x<10},B={x|x2-9x+14<0},C={x|5-m<x<2m}.
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若x∈C是x∈(A∩B)的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求證:順次連接A(2,-3),B(5,-$\frac{7}{2}$),C(2,3),D(-4,4)四點(diǎn)所得的四邊形是梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案