【題目】某校有1400名考生參加市模擬考試,現(xiàn)采取分層抽樣的方法從
文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進(jìn)行成績分析,
得到下面的成績頻數(shù)分布表:
分?jǐn)?shù)分組 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150] |
文科頻數(shù) | 2 | 4 | 8 | 3 | 3 |
理科頻數(shù) | 3 | 7 | 12 | 20 | 8 |
(1)估計文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分?jǐn)?shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴(yán)重,統(tǒng)計結(jié)果如下:
文理 失分 | 文 | 理 |
概念 | 15 | 30 |
其它 | 5 | 20 |
問是否有90%的把握認(rèn)為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨立性檢驗臨界值表:)
( | <>0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為.
(1)若對任意恒成立,求實數(shù)的取值范圍;
(2)若函數(shù)的極值為正數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=(4﹣lnx)lnx+b(b∈R).
(1)若f(x)>0,求實數(shù)x的取值范圍;
(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求實數(shù)b的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營的某種包裝的大米質(zhì)量ξ(單位:kg)服從正態(tài)分布N(10,σ2),根據(jù)檢測結(jié)果可知P(9.9≤ζ≤10.1)=0.96,某公司為每位職工購買一袋這種包裝的大米作為福利,若該公司有1000名職工,則分發(fā)到的大米質(zhì)量在9.9kg以下的職工數(shù)大約為
A. 10 B. 20 C. 30 D. 40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,以軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,已知直線與曲線交于不同的兩點,.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面ABCD是菱形,平面ABCD,,,F,G分別為PD,BC中點,.
(Ⅰ)求證:平面PAB;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:OP與AB不垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角().為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴建成正方形,其中點,分別在邊和上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;
(2)試問:當(dāng)為多少時,年總收入最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com