設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C.求:

(Ⅰ)求實(shí)數(shù)b 的取值范圍;

(Ⅱ)求圓C 的方程;

 

【答案】

(Ⅰ)b<1 且b≠0.(Ⅱ).

【解析】本小題主要考查二次函數(shù)圖象與性質(zhì)、圓的方程的求法.

(1)令=0,得拋物線與軸交點(diǎn)是(0,b);令,

由題意b≠0 且Δ>0,解得b<1 且b≠0.

(II)設(shè)所求圓的一般方程為:,令y=0,得,

根據(jù)它與=0 是同解方程,可得D,F(xiàn)的值,再根據(jù)=0 得=0,此方程有一個(gè)根為b,代入得出E=―b―1.從而可求出圓C的方程.

(Ⅰ)令=0,得拋物線與軸交點(diǎn)是(0,b);令,

由題意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)設(shè)所求圓的一般方程為:,

=0 得

這與=0 是同一個(gè)方程,

故D=2,F(xiàn)=

=0 得=0,此方程有一個(gè)根為b,代入得出E=―b―1.

所以圓C 的方程為

.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知半徑為r的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD相互垂直且交點(diǎn)為P.
精英家教網(wǎng)
(1)若四邊形ABCD中的一條對(duì)角線AC的長度為d(0<d<2r),試求:四邊形ABCD面積的最大值;
(2)試探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABCD的面積取得最大值,最大值為多少?
(3)對(duì)于之前小題的研究結(jié)論,我們可以將其類比到橢圓的情形.如圖2,設(shè)平面直角坐標(biāo)系中,已知橢圓Γ:
x2
a2
+
y2
b2
=1
(a>b>0)的內(nèi)接四邊形ABCD的對(duì)角線AC和BD相互垂直且交于點(diǎn)P.試提出一個(gè)由類比獲得的猜想,并嘗試給予證明或反例否定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C。

(1)求實(shí)數(shù)的取值范圍;

(2)求圓的方程;

(3)問圓是否經(jīng)過某定點(diǎn)(其坐標(biāo)與無關(guān))?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C.求:(Ⅰ)求實(shí)數(shù)b 的取值范圍;(Ⅱ)求圓C 的方程,并寫出圓C上必過的定點(diǎn)坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市魚臺(tái)一中高二上學(xué)期期中考試?yán)頂?shù)試卷(帶解析) 題型:解答題

(本題滿分12分)設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C.求:
(1)求實(shí)數(shù)的取值范圍;
(2)求圓C 的方程;
(3)問圓C 是否經(jīng)過某定點(diǎn)(其坐標(biāo)與無關(guān))?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為.求:

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求圓的方程;

(Ⅲ)問圓是否經(jīng)過某定點(diǎn)(其坐標(biāo)與b 無關(guān))?請(qǐng)證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案