給定橢圓>>0,稱圓心在原點,半徑為的圓是橢圓的“伴隨圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程及其“伴隨圓”方程;
(2)若傾斜角為的直線與橢圓C只有一個公共點,且與橢圓的“伴隨圓”相交于M、N兩點,求弦MN的長;
(3)點是橢圓的“伴隨圓”上的一個動點,過點作直線,使得與橢圓都只有一個公共點,求證:⊥.
(1)因為,所以
所以橢圓的方程為,伴隨圓方程……………2分
(2)設(shè)直線的方程,由得
由 得
圓心到直線的距離為所以……………6分
(3)①當(dāng)中有一條無斜率時,不妨設(shè)無斜率,
因為與橢圓只有一個公共點,則其方程為或,
當(dāng)方程為時,此時與伴隨圓交于點
此時經(jīng)過點(或且與橢圓只有一個公共點的直線是
(或,即為(或,顯然直線垂直;
同理可證方程為時,直線垂直……………………7分
②當(dāng)都有斜率時,設(shè)點其中,
設(shè)經(jīng)過點與橢圓只有一個公共點的直線為,
由,消去得到,
即,……………8分
,
經(jīng)過化簡得到:,
因為,所以有,………………………………10分
設(shè)的斜率分別為,因為與橢圓都只有一個公共點,
所以滿足方程,
因而,即垂直.
【解析】略
科目:高中數(shù)學(xué) 來源:2011屆廣東省深圳高級中學(xué)高三高考最后模擬考試?yán)頂?shù) 題型:解答題
(本題滿分14分)給定橢圓>>0,稱圓心在原點,半徑為的圓是橢圓的“伴隨圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程及其“伴隨圓”方程;
(2)若傾斜角為的直線與橢圓C只有一個公共點,且與橢圓的伴隨圓相交于M、N兩
點,求弦MN的長;
(3)點是橢圓的伴隨圓上的一個動點,過點作直線,使得與橢圓都只有一個公共點,求證:⊥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省、楚雄一中、昆明三中高三第二次聯(lián)考文科數(shù)學(xué) 題型:解答題
.(本題滿分12分)
給定橢圓>>0,稱圓心在原點,半徑為的圓是橢圓的“伴隨圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程及其“伴隨圓”方程;
(2)若傾斜角為的直線與橢圓C只有一個公共點,且與橢圓的“伴隨圓”相交于M、N兩點,求弦MN的長;
(3)點是橢圓的“伴隨圓”上的一個動點,過點作直線,使得與橢圓都只有一個公共點,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省長沙市長望瀏寧四縣高三3月調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分13分)
給定橢圓>>0,稱圓心在原點,半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個焦點為,其短軸上的一個端點到的距離為。
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點是橢圓的“準(zhǔn)圓”上的一個動點,過點作直線,使得與橢圓都只有一個交點。求證:⊥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三高考最后模擬考試?yán)頂?shù) 題型:解答題
(本題滿分14分)給定橢圓>>0,稱圓心在原點,半徑為的圓是橢圓的“伴隨圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程及其“伴隨圓”方程;
(2)若傾斜角為的直線與橢圓C只有一個公共點,且與橢圓的伴隨圓相交于M、N兩
點,求弦MN的長;
(3)點是橢圓的伴隨圓上的一個動點,過點作直線,使得與橢圓都只有一個公共點,求證:⊥.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com