【題目】一盒中裝有各色球12只,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.

【答案】解:(1)由題意知本題是一個(gè)古典概型,
試驗(yàn)包含的基本事件是從12個(gè)球中任取一球共有12種結(jié)果;
滿足條件的事件是取出的球是紅球或黑球共有9種結(jié)果,
∴概率為P==
(2)由題意知本題是一個(gè)古典概型,
試驗(yàn)包含的基本事件是從12個(gè)球中任取一球共有12種結(jié)果;
滿足條件的事件是取出的一球是紅球或黑球或白球共有11種結(jié)果,
∴概率為P=
即取出的1球是紅球或黑球的概率為;
取出的1球是紅球或黑球或白球的概率為
【解析】(1)由題意知本題是一個(gè)古典概型,試驗(yàn)包含的基本事件是從12個(gè)球中任取一球,滿足條件的事件是取出的球是紅球或黑球,
根據(jù)古典概型和互斥事件的概率公式得到結(jié)果.
(2)由題意知本題是一個(gè)古典概型,試驗(yàn)包含的基本事件是從12個(gè)球中任取一球,滿足條件的事件是取出的一球是紅球或黑球或白球,根據(jù)古典概型公式得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程是為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,曲線的極坐標(biāo)方程是.

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)求直線被曲線的截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,點(diǎn)的坐標(biāo)為的面積為.

(I)求橢圓的離心率;

(II)設(shè)點(diǎn)在線段,延長(zhǎng)線段與橢圓交于點(diǎn),點(diǎn)上,,且直線與直線間的距離為,四邊形的面積為.

(i)求直線的斜率;

(ii)求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線),焦點(diǎn)到準(zhǔn)線的距離為,過(guò)點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).

()若點(diǎn)焦點(diǎn)重合,且弦長(zhǎng),求直線的方程;

()若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)單位有職工80人,其中業(yè)務(wù)人員56人,管理人員8人,服務(wù)人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個(gè)容量為10的樣本,每個(gè)管理人員被抽到的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)剛搬遷到新校區(qū),學(xué)?紤],若非住校生上學(xué)路上單程所需時(shí)間人均超過(guò)20分鐘,則學(xué)校推遲5分鐘上課.為此,校方隨機(jī)抽取100個(gè)非住校生,調(diào)查其上學(xué)路上單程所需時(shí)間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時(shí)間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求頻率分布直方圖中a的值;
(2)從統(tǒng)計(jì)學(xué)的角度說(shuō)明學(xué)校是否需要推遲5分鐘上課;
(3)若從樣本單程時(shí)間不小于30分鐘的學(xué)生中,隨機(jī)抽取2人,求恰有一個(gè)學(xué)生的單程時(shí)間落在[40,50]上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),且的導(dǎo)數(shù)為.

(Ⅰ)若是定義域內(nèi)的增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)若方程有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷售公司7月份至12月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)和銷售量之間的一組數(shù)據(jù)如下表所示:

月份

7

8

9

10

11

12

銷售單價(jià)(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;

(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?

(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).

 參考公式:回歸直線方程,其中,參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有大型超市200家、中型超市400家、小型超市1400 家.為掌握各類超市的營(yíng)業(yè)情況,現(xiàn)按分層抽樣方法抽取一個(gè)容量為100的樣本,應(yīng)抽取中型超市(
A.70家
B.50家
C.20家
D.10家

查看答案和解析>>

同步練習(xí)冊(cè)答案